ТехЛиб СПБ УВТ

Библиотека Санкт-Петербургского университета высоких технологий

Надежность и долговечность жилых зданий

f_6395428В середине прошлого столетия строительной отрасли перешла к высшему этапу индустриализации – стандартизации. С этого момента основным показателем функциональных качеств жилого здания (уровень безопасности и комфортности проживания, соответствие санитарно-гигиеническим и противопожарным требованиям) – была выбрана надежность сооружения.

Надёжность сооружения – свойство основных конструктивных элементов сохранять значения установленных параметров функционирования в определённых пределах, соответствующих заданным режимам и условиям использования, технического обслуживания и эксплуатации.

По ГОСТ 27751-88 «Надежность строительных конструкций и оснований» строительные конструкции и основания должны быть изначально запроектированы таким образом, чтобы они обладали достаточной надежностью при возведении и эксплуатации с учетом, при необходимости, особых воздействий (например, в результате землетрясения, наводнения, пожара, взрыва).

 Для оценки надежности строительного объекта, как комплексного его свойства, выделяют три основных критерия, закладываемых на момент проектирования сооружения:

  • безотказностьсвойство объекта непрерывно сохранять заданную работоспособность в течение определенного периода времени;
  • долговечность свойство объекта сохранять работоспособность до наступления предельного состояния (отказа) при установленной системе технического обслуживания и ремонтов (ГОСТ 18322-78), т.е. с возможными перерывами в работе;
  • ремонтопригодность — свойство объекта, заключающееся в доступности и удобстве в проведении мероприятий по предупреждению и обнаружению причин возникновения отказов и повреждений, а также устранению их путем ремонта и обслуживания.

 В производстве строительных материалов и изделий в качестве важнейшего критерия надежности дополнительно учитывается сохраняемость свойств, т.е. длительное соответствие свойств материала или изделия — строго определенным стандартным требованиям.

Показатели качества могут изменяться с течением времени. Изменение их, превышающее допустимые значения, приводит к возникновению отказового состояния (частичного или полного отказа сооружения). Основное понятие, используемое в теории надёжности, – понятие отказа, т.е. утраты работоспособности, наступающей либо внезапно, либо постепенно. Таким образом, весь период эксплуатации сооружения рассматривается с точки зрения теории надежности, как наработка на отказ Т.

Согласно ГОСТ 133775, событие, заключающееся в нарушении работоспособности, называется отказом. Под наработкой на отказ понимают продолжительность работы объекта, т.е. нормативную долговечность, задаваемую технической типологией сооружения.

 Полной характеристикой любой случайной величины является ее закон распределения, т.е. соотношение между возможными значениями случайной величины и соответствующими этим значениям вероятностями.

К числу показателей надежности относятся:

— функция надежности p(t);

— плотность распределения наработки до отказа f(t);

 — интенсивность отказов l(t).

Функцией надежности называют функцию, выражающую вероятность того, что Т – случайная наработка до отказа объекта – будет больше заданной наработки (0,t), отсчитываемой от начала эксплуатации, т.е.

p(t)=P{Tіt}.

Перечислим некоторые очевидные свойства p(t):

1) p(0)=1, т.е. можно рассматривать безотказную работу лишь тех объектов, которые были изначально работоспособны;

2) p(t) является монотонно убывающей функцией заданной наработки t;

3) любой объект со временем откажет.

Наряду с p(t) используется функция ненадежности

q(t)=1 — p(t)=P{T<t}.

Функция ненадежности характеризует вероятность отказа объекта на интервале (0,t). Функция ненадежности является функцией распределения случайной величины Т; эта функция иногда обозначается F(t).

Надёжность эксплуатируемого объекта может находиться в двух возможных состояниях – работоспособном и отказовом. Для выявления параметров каждого состояния необходимо знать следующие величины, характеризующие аналогичные здания и сооружения:

Тср – наработка до первого отказа;

Т – наработка на отказ;

l(t) — интенсивность отказов;

w(t) — параметр потока отказов;

tв — среднее время восстановления работоспособного состояния;

вероятность безотказной работы за время t [Р (t)];

Kr — коэффициент готовности.

Закон распределения наработки до отказа определяет количественные показатели надежности несменяемых конструкций и элементов в сооружении. Закон распределения записывается либо в дифференциальной форме плотности вероятности f(t), либо в интегральной форме F(t). Существуют следующие соотношения между показателями надёжности и законом распределения:

Для сменяемых конструкций в сооружении вероятность появления n отказов за время t в случае простейшего потока отказов определяется законом Пуассона:

Из него следует, что вероятность отсутствия отказов за время t равна Р(t) = exp(-lt) (экспоненциальный закон надёжности).

Строительные конструкции и основания рассчитываются по методу предельных состояний, основные положения которого направлены на обеспечение безотказной работы конструкций и оснований с учетом изменчивости свойств материалов, грунтов, нагрузок и воздействий, геометрических характеристик конструкций, условий их работы, а также степени ответственности проектируемых объектов, определяемой материальным и социальным ущербом при нарушении их работоспособности.

Предельные состояния (отказы) подразделяются на две группы:

первая группа включает предельные состояния, которые ведут к полной непригодности к эксплуатации конструкций, оснований (зданий или сооружений в целом) или к полной (частичной) потере несущей способности зданий и сооружений в целом;

вторая группа включает предельные состояния, затрудняющие нормальную эксплуатацию конструкций (оснований) или уменьшающие долговечность зданий (сооружений) по сравнению с предусматриваемым сроком службы.

Предельные состояния первой группы характеризуются:

разрушением любого характера (например, пластическим, хрупким, усталостным;

потерей устойчивости формы, приводящей к полной непригодности к эксплуатации;

потерей устойчивости положения;

переходом в изменяемую систему;

качественным изменением конфигурации;

другими явлениями, при которых возникает необходимость прекращения эксплуатации (например, чрезмерными деформациями в результате ползучести, пластичности, сдвига в соединениях, раскрытия трещин, а также образованием трещин).

Предельные состояния второй группы характеризуются:

достижением предельных деформаций конструкций (например, предельных прогибов, поворотов) или предельных деформаций основания;

достижением предельных уровней колебаний конструкций или оснований;

образованием трещин;

достижением предельных раскрытий или длин трещин;

потерей устойчивости формы, приводящей к затруднению нормальной эксплуатации;

другими явлениями, при которых возникает необходимость временного ограничения эксплуатации здания или сооружения из-за неприемлемого снижения их срока службы (например, коррозионные повреждения).

Расчет по предельным состояниям имеет целью обеспечить надежность здания или сооружения в течение всего его срока службы эксплуатации, а также при производстве работ. Характеристики предельных состояний, определяемые визуально при общем осмотре и уточняемые при детальном обследовании, систематизированы в качестве признаков физического износа в ВСН 53-86р «Правила оценки физического износа жилых зданий».

Эксплуатационная надежность строительных конструкций исчерпывается вследствие развития дефектов, причинами которых являются: накопление повреждений в элементах и узлах конструкций, определяемые износом и старением материалов, несоответствие фактических и расчетных схем, несоблюдение правил эксплуатации и т. д.

Таким образом, постоянный контроль и регулярные технические осмотры и обследования жилых зданий должны предотвратить наступление предельных эксплуатационных состояний сооружения (отказов):

  • аварийное (первое предельное состояние), при котором наступает полная утрата конструкцией несущей способности, что сопровождается аварийными ситуациями;
  • предельно эксплуатационное состояние (второе предельное состояние), когда конструкции могут достигнуть таких статических или динамических перемещений, при которых невозможна эксплуатация сооружений.

Условия обеспечения надежности жилого здания в течение всего периода нормативной долговечности заключается в том, чтобы расчетные значения нагрузок или ими вызванных усилий, напряжений, деформаций, перемещений, раскрытий трещин не превышали соответствующих им предельных значений, устанавливаемых нормами проектирования конструкций или оснований.

Расчетные модели (в том числе расчетные схемы, основные предпосылки расчета) конструкций и оснований должны отражать действительные условия работы зданий или сооружений, отвечающие рассматриваемой расчетной ситуации. При этом должны учитываться факторы, определяющие напряженное и деформированное состояния, особенности взаимодействия элементов конструкций между собой и с основанием, пространственная работа конструкций, геометрическая и физическая нелинейности, пластические и реологические свойства материалов и грунтов, наличие трещин в железобетонных конструкциях, возможные отклонения геометрических размеров от их номинальных значений.

То есть, все принимаемые расчетные схемы и модели на первоначальных стадиях проектирования объекта – должны учитывать результаты наблюдений, технических осмотров и обследований зданий с аналогичными типологическими признаками.

При расчете конструкций должны рассматриваться следующие расчетные ситуации:

установившаяся, имеющая продолжительность того же порядка, что и срок службы строительного объекта (например, эксплуатация между двумя капитальными ремонтами или изменениями технологического процесса);

переходная, имеющая небольшую по сравнению со сроком службы строительного объекта продолжительность (например, возведение здания, капитальный ремонт, реконструкция);

аварийная, имеющая малую вероятность появления и небольшую продолжительность, но являющаяся весьма важной с точки зрения последствий достижения предельных состояний, возможных при ней (например, ситуация, возникающая в связи со взрывом, столкновением, аварией оборудования, пожаром, а также непосредственно после отказа какого-либо элемента конструкции).

Расчетные ситуации характеризуются расчетной схемой конструкции, видами нагрузок, значениями коэффициентов условий работы и коэффициентов надежности, перечнем предельных состояний, которые должны рассматриваться в данной ситуации.

Время является важнейшей составляющей надежности. Продолжительность жизни одного и того же материала, абсолютно идентичных строительных изделий, — зависит от выбранной конструктивной схемы и условий эксплуатации. В жилых зданиях условия эксплуатации являются нормативными. Поэтому критерий долговечности в жилых зданиях определяет, прежде всего, типология самого сооружения.

По типологии жилые здания делятся на традиционные, строившиеся до 1960 г., и индустриальные, к возведению которых отрасль перешла при решении жилищной программы в начале 60-х годов прошлого столетия.

По конструктивной схеме индустриальные сооружения отличаются тем, что имеют горизонтальный диск жесткости в виде железобетонных перекрытий. В традиционных зданиях такого горизонтального диска не имеется, поскольку даже в лучших традиционных сооружениях используются смешанные перекрытия: деревянные в основной части сооружения и железобетонные монолитные на путях эвакуации. Пространственную жесткость в традиционных сооружениях обеспечивают вертикальные диафрагмы жесткости – наружные и внутренние несущие стены.

Рис. 1. Устройство сборных железобетонных перекрытий в жилом доме индустриального типа и деревянного перекрытия по деревянным балкам – в традиционном сооружении.

Таким образом, для жилых зданий установлены шесть групп капитальности, включающей не только серийные сооружения, но и довоенные, дореволюционные здания, а также все типы некапитальных сооружений. Определяющим потребительским качеством функции для всех типов зданий стала долговечность.

К индустриальному жилью изначально относилась лишь одна группа – «Особо капитальные», стенового типа – с несущими продольными или поперечными стенами.

Конструктивной системой здания называется совокупность взаимосвязанных конструкций здания, обеспечивающих его прочность, жесткость и устойчивость.

Принятая на период проектирования сооружения конструктивная система должна обеспечивать прочность, жесткость и устойчивость здания на стадии возведения и в период эксплуатации при действии всех расчетных нагрузок и воздействий. Для полносборных зданий индустриального типа предусматривались меры, предотвращающие прогрессирующее (цепное) разрушение несущих конструкций здания в случае локального разрушения отдельных конструкций при аварийных воздействиях (взрывах бытового газа или других взрывоопасных веществ, пожарах и т.п.).

Конструктивные системы индустриальных жилых зданий классифицируются по типу вертикальных несущих конструкций: стены, каркас и стволы (ядра жесткости), которым соответствуют стеновые, каркасные и ствольные конструктивные системы. При применении в одном здании в каждом этаже нескольких типов вертикальных конструкций различаются каркасно-стеновые, каркасно-ствольные и ствольно-стеновые системы. При изменении конструктивной системы здания по его высоте (например, в нижних этажах — каркасная, а в верхних — стеновая), конструктивная система называется комбинированной.

До недавнего времени каркасная система несущих конструкций со свободной планировкой в жилых зданиях ограничивалась требованиями пожарной безопасности, поскольку при использовании этой схемы было сложно выполнить брандмауэры – несгораемые вертикальные преграды огню. При использовании сборного железобетонного каркаса в первых крупнопанельных жилых сериях – в сооружении применялись вертикальные диафрагмы жесткости, превращающие каркасную схему — в стеновую. Впоследствии от каркасной системы отрасль перешла к системе с несущими наружными и внутренними панелями.

Рис. 2. Конструктивные типы гражданских зданий: а — бескаркасный; б — каркасный; в — с неполным каркасом; 1 — несущие стены; 2 — междуэтажные перекрытия; 3 — колонны; 4 — ригели; 5 — самонесущие стены

 

На основании анализа долголетних наблюдений для зданий и сооружений были разработаны группы капитальности с установленной нормативно долговечностью.

 Расчетные сроки службы для зданий различных групп капитальности были установлены «Положением о проведении планово-предупредительного ремонта жилых и общественных зданий», утвержденным в 1964 г. Госстроем СССР, а также соответствующими положениями о ремонте производственных зданий и объектов другого назначения.

Долговечность индустриальных сооружений обуславливалась не только новым конструктивом, но и увеличением удельного веса несменяемых элементов, что вело к значительному сокращению эксплуатационных расходов.

В лучших домах традиционной, несерийной (традиционной) постройки доля несменяемых конструкций достигала примерно 42% (к несменяемым относились фундаменты, стены, лестницы). Остальные элементы (прежде всего, деревянные перекрытия) предполагалось заменять по мере их износа в процессе эксплуатации.

В индустриально построенных зданиях несменяемые конструкции составили 53%, так как к ним добавились несменяемые сборные железобетонные перекрытия, была значительно увеличена долговечность фундаментов. Так же несменяемой стала считаться и крыша, поскольку при развитии серийных сооружений произошла повсеместная замена скатных крыш на плоские с внутренним водостоком.

Следует отметить, что увеличение объема несменяемых элементов приводил к значительному удорожанию проектирования и строительства жилого дома. Именно это противоречие снимали индустриальные подходы к возведению жилья – только заводская штамповка могла быть широко доступна всем слоям населения.

Удельный вес стоимости несменяемых элементов

 

Конструкции

Удельный вес стоимости, % общей стоимости

в кирпичных зданиях старой постройки

в серийных кирпичных и полносборных зданиях

Фундаменты

5

7

Стены

35

30

Лестницы

2

2

Перекрытия

11

Крыши

3

Итого

42%

53%

 Для отдельных конструктивных элементов зданий в положении также устанавливались усредненные сроки службы. Предполагалось, что все несменяемые конструкции имели сроки службы, равные срокам существования самих зданий. Все остальные конструкции и оборудование зданий — соответствовали различным нормативным срокам службы, зависящим от материала, условий эксплуатации и иногда от группы капитальности, т. е. от первоначального вида и качества материалов и работы. Наибольшие сроки установлены для деревянных перекрытий (80—60 лет) и полов, средние для перегородок, окон, внутренней отделки (40-30 лет), а наименьшие сроки для водосточных труб, различных мастик и окрасок (8-5 лет).

Другие виды конструкций по расчетным срокам их службы предполагалось сменить два раза (например, деревянные стропила, окна, двери), но периодичность ремонтов определяли наиболее недолговечные конструкции — кровли и покрытия наружных выступающих деталей, их состояние выявлялось при периодических осмотрах. В акте осмотра обосновывалась необходимость ремонта.

Читать в разделе «Испытания и обследования зданий и сооружений»:

Обследования строительных конструкций: