ТехЛиб СПБ УВТ

Библиотека Санкт-Петербургского университета высоких технологий

Дефекты каменных и армокаменных конструкций

При обследовании каменных и армокаменных конструкций, прежде всего, выделяются наиболее ответственные несущие конструкции. Особое внимание уделяется местам опирания перемычек, балок, плит перекрытия и покрытия, характеру сопряжения стен между собой.

При оценке технического состояния каменных конструкций необходимо установить:

процент уменьшения сечения в месте повреждения;

стрелу отклонения или выпучивания стен, столбов и колец;

степень развития трещин и других деформаций в поврежденной зоне конструкций;

качество кладки, ширину и глубину швов;

влажностное состояние кирпичных наружных стен;

физико-механические свойства кладки, камня и раствора.

 

Основными внешними признаками отклонения или выпучивания стен являются смещение или выход из гнезд в каменных стенах концов балок междуэтажных перекрытий, стропил, крыши, а также наличие вертикальных трещин, отслоение наружных стен от внутренних поперечных в местах взаимного примыкания. Отклонение стен, даже самые незначительные, можно обнаружить по наличию трещин в штукатурке потолков около карнизов вдоль обследуемых стен. Протяженность таких трещин в уровне того или иного этажа показывает наличие отклонений стены в пределах того или иного участка ее длины вдоль здания.

Установление величины отклонения, искривления или выпучивания стены производится путем непосредственного замера ширины трещин в штукатурке потолков или величины смещения балок в отношении гнезд в стенах или замером трещин в примыканиях отклонившихся наружных стен к поперечным, или путем провешивания таких стен обычным веском на шнуре или на тонкой проволоке. В особо ответственных случаях или при значительной трудности провешивания отклонение стен от вертикали может быть установлено теодолитом или другими геодезическими инструментами.

При воздействии на каменные конструкции техногенных и природных факторов (волны, взрыва, землетрясения) обследованию и замеру подлежат все видимые на глаз трещины, включая волосяные, как по ширине, глубине, так и по длине, начертанию и расположению их на поверхности стен, колонн и столбов. Расположение трещин наносится на схемах или чертежах конструкций.

Особенно тщательно следует осматривать каменные неоштукатуренные стены, так как трещины в них с поверхности малозаметны.

При наличии штукатурки трещины обнаружить легче, но необходимо иметь в виду, что не всегда ширина и длина трещины в штукатурке соответствует размерам трещины в самой кладке. Чтобы установить действительные размеры трещин в кладке штукатурку следует предварительно отбить.

При определении качества кладки отмечаются вид и сорт кирпича (красный, силикатный, пустотелые, пористые и т.п.), его качество (железняк, нормальный, алый, недожог и т.п.), а также вид раствора и вяжущего (цементный, сложный, известковый и т.п.).

Фактическая толщина горизонтальных швов кладки устанавливается замером высоты 5-10 рядов кладки и соответствующим подсчетом средних значений. Если в среднем толщина горизонтальных швов превышает 12 мм, то кладка считается пониженной прочности, и необходимо вводить к допускаемым напряжениям по нормам коэффициент снижения. Прочность кирпича определяется по ГОСТ 24332-80. Определение прочностных характеристик раствора производится по указаниям ГОСТ 5802-86.

При повреждении кирпича под опорными участками перемычек и поворота конца перемычки от изгибающего момента, возникающего вследствие большого местного сжатия, могут образовываться сквозные наклонные трещины кирпичной кладки простенка, которые образуются, как правило, параллельно направлению действия сил от приложенных нагрузок.

При обследовании армокаменных конструкций следует особое внимание уделить состоянию арматуры и защитного слоя цементного раствора для конструкций с расположением арматуры с наружной стороны кладки.

 Важным этапом обследования каменных конструкции является установление деформативно-прочностных характеристик. Обнаруженные в несущих каменных конструкциях трещины следует оценивать с позиции работы кладки над нагрузкой при сжатии. Обозначив F— усилие в кладке; Fcrc — усилие в кладке, при котором образуются трещины; Fu — разрушающее усилие, можно выделить четыре стадии работы кладки при сжатии.

Первая стадия работы каменных конструкций при усилии в кладке F меньше усилий Fcrc,при котором не образуются трещины, свидетельствует о нормальном состоянии конструкций. Вторая стадия при F = Fcrc характеризует удовлетворительное состояние конструкций; третья стадия при Fcrc< F< Fu характеризует неудовлетворительное состояние конструкций; четвертая стадия при F = Fu характеризует предаварийное или аварийное состояние конструкций (Fu — разрушающее усилие).

Среди причин возникновения дефектов следует выделить: механические, динамические, температурно-влажностные воздействия, а также дефекты, обусловленные неравномерностью осадок основания. Последние, как правило, приводят к наиболее значительным дефектам.

 В зависимости от характера изменения осадки фундаментов вследствие технической эксплуатации зданий и других техногенных процессов возможно развитие растягивающих напряжений в кладке, приводящих к образованию трещин. Основные варианты развития трещин состоят:

1 — осадке средней части здания за счет просадочных явлений в грунтах основания. Она вызывает параболические кривые, образованные сетью трещин, расширяющихся книзу и наклоненных к центральной оси здания;

2 — осадке крайних частей здания, что вызывает параболические кривые, образованные сетью трещин, расширяющихся кверху и наклоненных к краям здания;

3 — разломе здания вследствие максимальных осадок крайних частей здания и минимальной осадки в центральной части. Образуется сквозная вертикальная, расширяющаяся кверху трещина. Причиной может служить местная подпирающая опора в грунте основания центральной части здания;

4 — просадке части здания, приводящей к образованию вертикальной извилистой трещины одинаковой толщины раскрытия.

Вид трещин в каменных стенах зданий при основных видах осадки грунта оснований (R -сопротивление грунта основания)

Вторая группа воздействий, приводящая к трещинообразованию кирпичной кладки, относится к конструктивным деформациям и включает три стадии напряженно-деформированного состояния.

1-я стадия — начало трещинообразования происходит при нагрузках, составляющих 40-60 % разрушающих, при кладке на слабых растворах (менее 1 МПа), 50-70 % — при кладках на растворах средней прочности (1-2,5 МПа), 70-90 % — на прочных растворах (более5 МПа). Эта стадия включает появление трещин, распространяемых на высоту 2-3рядов кладки, совпадающих с вертикальными швами кладки. Появление трещин свидетельствует о превышении нагрузки несущей способности кладки;

2-я стадия — при возникновении значительных напряжений в кладке. Она характеризуется появлением вертикальных трещин в нескольких рядах кладки;

3-я стадия трещинообразования соответствует аварийному состоянию.

Схему распределения нормальных и касательных напряжений в кирпичной кладке можно смоделировать в виде пластины с прямоугольными отверстиями. При равномерно распределенной нагрузке максимальные нормальные напряжения концентрируются на границе отверстий, а касательные — в простенках. Примерное соотношение напряжений приведено на эпюрах по характерным сечениям.

Распределение напряжений в стене-пластине с проемами и выпучивание кирпичных простенков

Определяющее влияние на концентрацию напряжений оказывает процесс старения кладки (выветривание и разрушение швов) в результате влагомассопереноса и влияния цикличных процессов замораживания-оттаивания. В результате обжатия швов в определенной части кладки возникают напряжения, превышающие ее несущую способность.

Методом визуального наблюдения легко устанавливается наличие трещин, сколов. По характеру их расположения можно судить о причинах возникновения дефектов. Так, при увеличении нагрузки выше расчетной наблюдается образование вертикальных трещин различной степени раскрытия. Недостаточная длина опирания перемычек, неправильное выполнение кирпичной кладки над проемами, устройство перемычек над витринными проемами без устройства портала приводят к характерному образованию трещин. Причиной образования трещин в простенках могут служить: применение материалов, не отвечающих проектным требованиям; некачественная перевязка швов в кладке; неправильное выполнение температурных и деформационных швов; нарушение технологии производства работ в зимнее время; перегрузки при надстройке здания и др.

Появление наклонных трещин может иметь различные причины. В первую очередь они вызваны неравномерностью осадок фундамента из-за недостатков в подготовке основания, смещения осей, наложения дополнительных нагрузок от пристраиваемых зданий. Нарушение эксплуатационного режима здания происходит в результате подтопления или вымывания основания атмосферными или техническими водами, увлажнения грунта из-за протечек, понижения уровня грунтовых вод при производстве работ вблизи возведенного здания и др.

Деформации внутренних стен в местах примыкания к наружным вызваны более высокой нагрузкой и отсутствием в этих местах армирования кладки.

В процессе обследования очень важно знать динамику раскрытия трещин во времени. Для этой цели на трещины устанавливают гипсовые, стеклянные или металлические маяки. Гипсовые и стеклянные маяки устанавливают на стене, предварительно очищенной от штукатурки. Используются цементные или гипсовые растворы. Металлические маяки изготавливают из кровельной стали и крепят к стене клеем или дюбелями. На маяках выставляются номер и дата установки. Динамика развития деформаций регистрируется в журнале наблюдений. Глубину трещин определяют с помощью щупов и игл, а ширину раскрытия — с помощью микроскопов МПБ-2, Мир-2. Пределы измерений МПБ-2 составляют до 6,5 мм, а Мир-2 — от 0,015 до 0,6 мм.

Характерные примеры образования трещин в кирпичных стенах

Важным этапом обследований является процесс определения физико-механических характеристик кладки. Этому этапу предшествуют качественная оценка кладки и ее соответствие техническим требованиям: толщина швов и перевязка, соблюдение горизонтальности рядов, вертикальность стен и др. Для механических испытаний материала каменной кладки из малонагруженных элементов конструкций извлекаются образцы или выбуриваются керны, которые испытываются с использованием стандартного оборудования.

При зондировании отбирают пробы материала не менее чем через каждую четверть толщины стены. Число точек зондирования принимают в зависимости от размеров здания и его этажности.

Число точек зондирования для различных зданий

Количество секций в здании

Несущие каменные стены

Число этажей

до 3

4-5

свыше 5

1-2

3

4

4

3-4

5

7

8

Более 4

7

9

10

Определение прочности камней производится в соответствии с ГОСТ8462-85, раствора — ГОСТ 5802-86.Морозостойкость материалов каменной кладки испытывают в соответствии с ГОСТ7025-91.

Условие, при котором поврежденные каменные и армокаменные конструкции подлежат усилению, имеет следующий вид

КбпР > ТР

где Кбп  — коэффициент безопасности (Кбп  —  1,7 для неармированной кладки, 1,5 — для кладки с сетчатым армированием); Р — фактическая нагрузка в момент обследования; N — несущая способность конструкции без повреждений; КТР  —  коэффициент, учитывающий снижение несущей способности при наличии повреждений.

Значения коэффициента КТР
снижения несущей способности кладки в зависимости от характера повреждений

№ п.п

Характер повреждения кладки стен, столбов и простенков

КТР
при кладке

неармированной

армированной

1

Трещины в отдельных кирпичах, не пересекающие растворные швы

1,0

1,0

2

Волосяные трещины, пересекающие не более двух рядов кладки

0,9

1,0

3

То же, при пересечении не более 4 рядов при числе трещин не более 4 на 1 м ширины стены, столба или простенка

0,75

0,9

4

Трещины с раскрытием до 2 мм, пересекающие не более 8 рядов кладки, при числе трещин не более 4 на 1 м ширины стены, столба, простенка

0,5

0,7

5

То же, при пересечении более 8 рядов

0

0,5

При этом для расчета конструкций принимается средний предел прочности кладки, который при известных марках кирпича и раствора принимается равным удвоенной величине расчетного сопротивления кладки .

Для испытаний из различных участков каменной конструкции отбирают образцы. Предел прочности при сжатии кирпича определяется на образцах, состоящих из двух кирпичей или из двух половинок, а предел прочности при сжатии камней определяется на целом камне.

Предел прочности при сжатии Rсж (МПа) определяют по зависимости

где Р — наибольшая нагрузка, кН; А — площадь поперечного сечения, м2.

Предел прочности при изгибе Rизг
(МПа) определяют согласно схеме испытания

где Р — наибольшая нагрузка; l — расстояние между осями опор; b, h — ширина и высота сечения образца, м.

Полученные данные используются для определения предела прочности RКЛ
кладки при сжатии по средней прочности камня и раствора

где А — конструктивный коэффициент, зависящий от вида кладки и прочности камня

т, п
коэффициенты, зависящие от вида кладки; Rр, RK
— прочность раствора и камня.

 Значения коэффициентов а, b, т, п

№ п.п.

Вид кладки

Значения коэффициентов

а

b

т

п

1

Из кирпича, кирпичных блоков и камней правильной формы с высотой ряда 50-150 мм

0,2

0,3

1,25

3,0

2

Из сплошных камней правильной формы с высотой ряда 180- 360 мм

0,15

0,3

1,10

2,5

3

То же, из пустотелых камней

0,15

0,3

1,50

2,5

4

Из сплошных крупных блоков с высотой ряда более 150 мм

0,09

0,3

1,10

2,0

5

Из бутового камня

0,2

0,25

2,50

8,0

Коэффициент изменчивости прочности кирпичной кладки принимается С = 0,15, а условное нормативное сопротивление RН = RКЛ(1 — 2С) = 0,7RКЛ.

Вероятностное понижение прочности кладки с учетом имеющихся ослаблений(пустошовка, гнезда, отклонения от вертикали) дает значение RКЛ
= 0,5RН.

При наличии повреждений кладки стен, столбов и простенков вводится коэффициент снижения несущей способности КТР .

Читать в разделе «Испытания и обследования зданий и сооружений»:

Обследования строительных конструкций: