ТехЛиб СПБ УВТ

Библиотека Санкт-Петербургского университета высоких технологий

Рубрика «Силикатные расплавы»

Особенности синтеза строительных стеклокомпозиционных материалов на основе золошлаковых отходов ТЭС с применением наномодификаторов

15849_html_88055b4Н.Н. Ефимов, Е.А. Яценко, В.И. Паршуков, А.С. Косарев, И.С. Грушко, Е.В. Чеботарева, В.А. Гузий, А.В. Рябова, В.А. Рытченкова
Южно-Российский государственный технический университет

(Новочеркасский политехнический институт)
г. Новочеркасск, Россия


Среди промышленных отходов одно из первых мест по объемам занимают золы и шлаки от сжигания твердых видов топлива на тепловых электрических станциях (ТЭС). Огромные количества золы и шлака скопились в отвалах, занимающих ценные земельные угодья. Содержание золошлаковых отвалов требует значительных затрат. В то же время золы и шлаки тепловых электрических станций можно эффективно использовать в производстве различных материалов, что подтверждается многочисленными исследованиями и практическим опытом.

Проведение исследований в области создания ресурсосберегающих технологий переработки золошлаковых отходов (ЗШО) тепловых электрических станций уже несколько лет являются тенденцией развития новых научных методов, как в российской, так и в мировой науке. Промышленные отходы представляют собой побочный продукт различного рода производств. До сих пор в производстве шлакоситаллов использовали металлургический шлак, т.к. он представляет собой сплав силикатов, обычных для химического состава ситаллов подобного назначения.

Читать далее…

Материалы и изделия из силикатных расплавов

steklo-v-budushhem3Общие сведения

Силикатные расплавы — это расплавы, которые получают из кремнезема SiO2 и соединений на его основе— силикатов. Сырьем для получения силикатных расплавов служат распространенные горные породы (песок, базальт, диабаз, мергель), побочные продукты промышленности (металлургические шлаки, золы) и вторичное сырье (стеклобой и др.).

Из силикатных расплавов в зависимости от исходного сырья, определяющего химический состав расплава, и режима охлаждения можно получить различные по структуре и свойствам материалы и изделия: стекло и стеклянные изделия, стеклокристаллические материалы и частично закристаллизованные материалы и изделия из горных пород и шлаков (каменное литье). Больше всего в строительстве используются стекло и стеклянные изделия.

Характерная особенность силикатных расплавов состоит в том, что они обладают способностью при достаточно быстром охлаждении переходить в стеклообразное состояние. Признаками стеклообразного состояния вещества являются отсутствие четко выраженной точки плавления (вещество при нагревании размягчается и постепенно переходит в жидкое состояние , при охлаждении— наоборот), гомогенность и изотропность, т. е, отсутствие векториальности свойств.

Читать далее…

Ситаллы и шлакоситаллы. Литые каменные изделия

img2Ситаллы и шлакоситаллы

Ситаллы — стеклокристаллические материалы, получающиеся путем направленной кристаллизации стекла, т. е. структура ситаллов— вид кристаллов, их размер и количество —регулируются в процессе производства. Особенность структуры ситаллов характеризуется тем, что между весьма мелкими кристаллами (несколько мкм) равномерно распределена стекловидная фаза (прослойкой около 1 мкм), количество которой в хорошо закристаллизованных материалах составляет 5… 10 %. Структура ситаллов, обеспечивая сохранение положительных свойств стекла, придает им повышенную механическую прочность, термическую и химическую стойкость, диэлектрические свойства, уменьшает хрупкость.

В основу технологии ситаллов положен принцип катализированной кристаллизации. Для этого в расплав вводят добавки, катализирующие кристаллизацию при последующей термообработке материала. Термообработка ведется по ступенчатому режиму: вначале материал выдерживают при температуре соответствующей максимальной скорости образования центров кристаллизации, а затем при температуре максимальной скорости роста кристаллов. Таким образом достигается необходимая степень закристаллизованности материала, при требуемом размере кристаллов.

Читать далее…

Разновидности стекла и стеклянных изделий в строительстве

Листовое стекло (обычное оконное, увиолевое, теплозащитное, светорассеивающее, закаленное, витринное, армированное и др.) является самым распространенным стеклом для строительных целей.

Рис.1. Листовое стекло

Оконное стекло выпускают толщиной 2; 2,5; 3; 4; 5 и 6 мм в виде листов от 4.00x400 до 1600x2200 мм или по спецификации потребителя. Стекло должно быть бесцветным и прозрачным (светопропускание в зависимости от толщины не менее 84…90 %).

Увиолевое стекло пропускает не менее 25 % ультрафиолетовых лучей. Это достигается за счет применения стекольной шихты с минимальным содержанием примесей оксидов железа, титана и хрома. Такое стекло используют для остекления проемов в лечебных, детских учреждениях, оранжереях и других специальных сооружениях.

Теплозащитное стекло способно поглощать до 75 % инфракрасных лучей. Его изготовляют из стекломассы, в которую вводят оксиды кобальта, никеля и железа, или путем обработки поверхности стекла специальными растворами при его вытягивании. Применяют такое стекло для остекления зданий и средств транспорта с целью уменьшения солнечной и тепловой радиации, особенно в южных районах.

Читать далее…

Современное производство стекла

1295638556_151b729a61a665e604cb6438a7616f8eСырье для производства стекла

Основные компоненты строительных стекол — SiO2; А12О3; Na2O; CaO; MgO — образуются в стекломассе при нагреве и последующем плавлении так называемых главных сырьевых материалов.

 Главные сырьевые материалы вводят в стекольную шихту, как правило, в виде природных соединений.

 Кремнезем SiO2 — основной стеклообразующий оксид, вводят в шихту в виде кварцевого песка или молотых песчаников и кварцитов с минимальным содержанием примесей (железа, хрома, титана), снижающих светопропускание стекла.

 Глинозем А12О3 поступает в стекольную шихту в составе полевых шпатов, каолина, а для высокосортных стекол — в виде чистого оксида алюминия. Увеличение содержания SiO2 и А12О3 повышает тугоплавкость и химическую стойкость стекла

 Оксиды натрия Na2O и калия К2О образуются в результате разложения при варке стекла введенных в шихту соответственно соды или сульфата натрия и поташа или калиевой селитры.

Оксид натрия ускоряет процесс стеклообразования, понижая температуру плавления и облегчая осветление массы, но повышает коэффициент теплового расширения и уменьшает химическую стойкость стекла. Оксид калия снижает склонность стекла к кристаллизации, придает ему блеск и улучшает светопропускание.

Оксиды кальция СаО и магния MgO в стекольную шихту вводят в виде мела, мрамора, известняка, доломита. Эти оксиды повышают химическую стойкость стекла, а оксид магния также снижает склонность стекла к кристаллизации. В специальные стекла (например, оптическое, лабораторное) вводят оксиды свинца, бария и цинка.

Читать далее…

Стекло: общие сведения, состав и свойства

Из истории стеклоделия

Археологи доказали, что еще за 3000 лет до н. э. древние египтяне умели выплавлять фаянс, из которого делали разноцветную облицовочную плитку.  На территориях Египта и Месопотамии стекло как глазурное покрытие для каменных бус и керамических сосудов делали с доисторических времен. Это подтверждено археологическими раскопками, во время которых  были найдены стеклянные изделия. В основном это были бусы, датируемые 2450 г. до н. э.

 19

 pic8186

 Ожерелье-воротник. Египет, XIV-XIII вв. до н.э.

 Стеклянный сосуд, Египет. XIV в. до н.э.

Читать далее…