ТехЛиб СПБ УВТ

Библиотека Санкт-Петербургского университета высоких технологий

Объемно-планировочные и конструктивные решения промышленных зданий

Рисунок16

Несмотря на многообразие производств и соответственно объемно-планировочных и конструктивных решений зданий, могут быть выделены некоторые общие принципы этих решений. Среди них, прежде всего, следует выделить блокирование в одном промышленном здании некоторых производственных помещений, обслуживающих один технологический процесс, или некоторых цехов с разными технологическими процессами или даже разных промышленных предприятий.

Опыт проектирования показывает, что с помощью блокирования можно в отдельных случаях уменьшить площадь заводской территории на 30%, сократить периметр наружных стен до 50%, снизить стоимость строительства на 15—20%.

Вместе с тем блокирование, учитывая разные характеристики технологических процессов, может создать определенные трудности в объемно-планировочных и конструктивных решениях зданий, имея в виду возможные различные требования к размерам пространства, к метеорологи­ческому режиму, воздушной среде и пр.

Блокирование на территориях, с относительно неспокойным рельефом, может привести к неоправданному возрастанию объема земляных работ и снижению экономического эффекта. Поэтому блокирование целесообразно в тех случаях, когда характеристики технологических процессов (например, по нагрузкам, требованиям к среде и др.) относительно близки между собой и когда местные условия строительства не вызывают серьезных трудностей (например, по рельефу, размерам территории и пр.).

Следует отметить еще один положительный фактор блокирования — возможность объединения однородных вспомогательных цехов (например, ремонтно-механических, складских и т. п.) разных производственных процессов. Такое объединение дает возможность не только сократить требуемые объемы здания в результате уменьшения вспомогательных площадей, но и уменьшить количество персонала.

Рис.1. Блокирование в одном здании двух предприятий с различной технологией производства – текстильной фабрики и завода электротехнических изделий.

Наряду с блокированием сохраняет свое значение и павильонная застройка, когда она оправдана характером технологического процесса (например, сопровождаемого значительными тепло- и газовыделениями), местными условиями и главное — доказательными экономическими преимуществами.

На основании экономических соображений в промышленности приборостроения получил, например, применение так называемый «модульный принцип» формирования структуры предприятия, согласно которому предприятие состоит из нескольких авто­номных однородных единиц — «технологических модулей», размещаемых в отдельных небольших производственных зданиях (корпусах-модулях).

Экономический эффект достигают за счет введения в эксплуатацию сначала первого корпуса-модуля и получения готовой продукции, а затем последовательно вводимых других корпусов. Таким образом, к окончанию строительства последнего корпуса-модуля, т. е. к моменту окончания строительства предприятия в целом, оно выпускает готовую продукцию во все нарастающем объеме. Следует отметить, что при «модульном принципе» утрачиваются преимущества блокирования.

В решении вопроса о блокировании или применении павильонной застройки существенную роль наряду с перечисленными выше технологическими факторами играет экономика

Выбор этажности представляет собой одну из важных задач, решаемых в процессе проектирования.

Если характеристики технологического процесса допускают с одинаковой степенью целесообразность применения как одноэтажных, так и многоэтажных зданий, выбор этажности здания зависит от местных условий (площади участка, отведенного под строительство, его рельефа, климатических характеристик местности и т. п.), а также от технических и эко­номических показателей.

Следует иметь в виду, что одноэтажные здания позволяют более свободно размещать и перемещать оборудование при модернизации технологического процесса. В них относительно просто решается устройство подъемно-транспортного оборудова­ния и естественного освещения по всей производственной площади цеха. Вместе с тем одноэтажные промышленные здания требуют значительных территорий, которые, бывает часто трудно выделить по условиям застройки города, а с другой — городские территории имеют большую ценность в связи с наличием элементов благоустройства (дороги, подземные коммуникации и т. п.) и перспективами дальнейшего развития города. Строительство одноэтажных промышленных зданий в загородной зоне влечет за собой сокращение нередко ценных сельскохозяйственных угодий.

Следует иметь в виду, что в многоэтажных зданиях общая площадь всегда на 15—20% выше, чем в одноэтажных, за счет устройства лестниц, подъемников, большого числа других коммуникационных помещений. Поэтому при выборе этажности основным критерием считают экономические показатели, получаемые на основании сравнения вариантов возможных ре­шений, если какие-либо из технологических требований не определяют заведомо этажность.

Наконец, следует выделить принцип унификации решений зданий, который преследует получение относительно лучшего объемно-планировочного и конструктивного решения, способствует повышению гибкости или универсальности объемно-планировочных и конструктивных решений промышленных зданий, что имеет большое значение для ускорения научно-технического прогресса.

Повышение универсальности или гибкости производственных зданий достигают прежде всего в результате освобождения пространства, например, за счет увеличения сетки колонн и в необходимых случаях за счет повышения высоты помещения (в чистоте). Повышение универсальности также достигают некоторыми конструктивными мероприятиями, например, устройством в одноэтажных промышленных зданиях по всей его площади усиленного пола, допускающего установку оборудования в любом месте помещения без устройства специальных фундаментов.

Преследуя повышение универсальности, нельзя забывать об экономической стороне дела. Например, увеличение сетки колонн может привести к повышению стоимости конструкций покрытия из-за увеличения пролета или шага вертикальных опор. Поэтому, принимая то или иное решение, учитывающее условия повышения универсальности здания, необходимо проверить его экономическую эффективность.

Как указывалось, целесообразное решение промышленного здания определяют прежде всего экономичным использованием пространства, т. е. его площадей и объемов для того технологического процесса, для которого оно предназначено. Приблизительно требуемые производственные площади определяют по мощности предприятия на основе укрупненных отраслевых показателей выпуска готовой продукции в тоннах или рублях с I м2 площади. Отраслевые показатели выводят на основе показателей действующих од­нородных передовых в техническом и производственном отношениях предприятий.

При проектировании здания уделяют большое внимание не только рациональному расположению технологического оборудования, удобной транспортировке сырья, полуфабрикатов, готовой продукции и отходов производства, но и правильной орга­низации рабочих мест, обеспечению безопасности и созданию условий труда, отвечающих санитарно-гигиеническим требованиям.

Объемно-планировочное решение должно быть возможно проще по своей форме. Здание прямоугольное в плане с параллельно расположенными пролетами одинаковой ширины и высоты упрощает конструктивное решение, повышает степень сборности конструкций, сокращает число их типоразмеров.

Важный общий принцип объемно-планировочных решений — изоляция вредностей одних производственных помещений от других. Видимое влияние могут оказывать метеорологический режим, состав воздуха, шум, вибрация. Например, производства, технологический процесс которых сопровождается значительными тепло или газовыделениями, размещают в одноэтажных зданиях, при этом ширину и профиль таких зданий назначают с учетом обеспечения эффективной аэрации. Очевидно, при этом может быть предпочтительна павильонная застройка, обеспечивающая надежную изоляцию помещений с нормальным режимом. Производства, при которых в воздух могут выделяться ядовитые газы, пары и пыль в концентрациях, превышающих предельно допустимые нормы, располагают в отдельных помещениях, изолированных от других помещений зданий соответствующими ограждающими конструкциями.

Значительное влияние на объемно-планировочные и конструктивные решения промышленных зданий оказывают природно-климатические характеристики места строительства по тем­пературному и ветровому режимам, по количеству осадков и другим показателям. В суровых климатических условиях предпочтительны, например, здания с меньшей площадью наруж­ных ограждающих конструкций (блокированные, многоэтажные) в целях снижения теплопотерь и. следовательно, повышения экономичности здания в эксплуатации. Повторяемость, скорость и направление ветров, а также закономерности снегопереноса оказывают влияние на выбор профиля покрытия, если предусматривают аэрацию и естественное освещение через фонари. Характеристики светового климата вообще определяют решение естественного освещения, размеры светопроемов и размеры фонарей. Из сказанного следует сделать вывод, что климатические характеристики тщательно выявляют и учитывают при принятии проектного решения.

Значительное влияние на объемно-планировочные и конструктивные решения оказывают требования пожарной безопасности. В соответствии с ними определяют наибольшую допускаемую этажность зданий, требуемую этажность зданий, требуемую степень огнестойкости их конструкций и наибольшую допускаемую площадь этажа между противопожарными пре­градами.

Если позволяет технологический процесс, помещения с производствами, наиболее опасными в пожарном отношении, располагают в одноэтажных зданиях у наружных стен, а в мно­гоэтажных зданиях — на верхних этажах. Из здания на случай воз­никновения пожара предусматривают возможность безопасной эвакуации людей, для чего проектируют эвакуационные пути и выходы.

Эвакуационные выходы для людей не предусматривают через помещения с производствами категорий А, Б и Е, а также через помещения в зданиях IV и V степени огнестойкости.

Категории производств А и Б — взрыво-, пожароопасные производства. Производства категории А характеризуется применением, хранением или образованием в процессе производства горючих газов, нижний предел взрываемости которых 10% и менее к объему воздуха; жидкости с температурой вспышки паров до 28° С включительно при условии, что указанные газы и жидкости могут образовывать взрывоопасные смеси в объеме, превышающем 5% объема помещения; вещества, способные взрываться и гореть при взаимодействии с водой, кислородом воздуха и друг с другом.

Производства категории Б характеризуются наличием горючих газов, нижний предел взрываемости которых более 10% к объему воздуха; жидкости с температурой вспышки паров выше 28 до 61° С включительно; жидкости, нагретые в условиях производства до температуры вспышки и выше; горючие пыли или волокна, нижний предел взрываемости которых 65 г/м3 и менее к объему воздуха, при условии, что указанные газы, жидкости и пыли могут образовать взрывоопасные смеси в объеме, превышающем 5% объема помещения.

Производства категории В, Г и Д — пожароопасные.

Производства категории В характеризуются наличием жидкости с температурой вспышки паров выше 61° С; горючей пыли или волокон, нижний предел взрываемости которых более 65 г/м3 к объему воздуха; веществ, способных только гореть при взаимодействии с водой, кислородом воздуха или друг с другом; твердых сгораемых веществ и материалов.

В качестве эвакуационных выходов используют предусматриваемые для, производственных целей проезды, проходы, лестницы, двери и ворота, за исключением ворот, предназначенных для пропуска железнодорожного транспорта.

Число эвакуационных выходов из каждого помещения должно быть не менее двух. Наружные пожарные лестницы, удовлетворяющие противопожарным требованиям, могут быть ис­пользованы в качестве выходов со второго и вышерасположенных этажей. В зависимости от категории пожарной опасности производства и степени огнестойкости здания расстояние от наиболее удаленного рабочего места до выхода наружу или в лестничную клетку принимают таким, чтобы люди могли покинуть помещение за то время, пока пребывание в нем допустимо, т. е. до тех пор, пока не распространится огонь и продукты горения.

Ширину коммуникационных помещений и дверей на путях эвакуации принимают в зависимости от числа людей, находящихся на наиболее населенном этаже (кроме первого), с таким расчетом, чтобы их пропускная способность полностью обеспечивала эвакуацию в заданное время.. В большинстве случаев конструкции одноэтажных и многоэтажных промышленных зданий выполняют по каркасной схеме. Каркасные системы наиболее рациональны при значительных статических и динамических нагрузках, характерных для промышленных зданий, и значительных размерах перекрываемых пролетов.

Однако при небольших пролетах (до 12 м) и отсутствии тяжелого подъемно-транспортного оборудования вместо каркасных конструкций применяют конструкцию с несущими стенами. Основные конструктивные элементы таких зданий — стены, несущие конструкции покрытия (балки или фермы) и уложенные по ним плиты покрытия. Поскольку в промышленных зданиях обычно отсутствуют внутренние поперечные стены, устойчивость наружных стен достигается устройством пилястр, которые располагают с внутренней или наружной стороны стены, чаще всего в местах опирания несущих конструкций покрытия.

Несущим остовом одноэтажного каркасного промышленного здания служат поперечные рамы и связывающие их продольные элементы.


Рис.2. Основные элементы каркаса одноэтажного промышленного здания. а — общий вид; б — схема устройства подстропильных конструкций; в — схема устройства вертикальных связей в покрытии: 1 — фундамент под колонну, 2 — колонна каркаса, 3 — ригель (балка или ферма), 4 — подкрановая балка, 5 — фундаментная балка; 6 — несущая конструкция ограждающей части покрытия плиты; 7 — подстропильная ферма; 8 — вертикальные связи между колоннами, 9 — вертикальные связи в покрытии; 10 — наружная стена, 11 — оконные переплеты; 12 — — ограждающая конструкция покрытия (пароизоляция, термоизоляция и кровля). 13 — воронка внутреннего водостока.

Поперечная рама каркаса состоит из стоек, жестко заделанных в фундамент, и ригелей (ферм или балок), являющихся несущими конструкциями покрытия, опертых на стойки каркаса.

Подольные элементы каркаса обеспечивают устойчивость каркаса в продольном направлении и воспринимают кроме нагрузок собственной массы продольные нагрузки от торможения кранов и нагрузки от ветра, действующего на торцевые стены зда­ния. К. этим элементам относятся: фундаментные, обвязочные и подкрановые балки, несущие конструкции ограждающей части покрытия и специальные связи (между стойками и между несущими конструкциями покрытия) .

Наружные стены каркасных зданий представляют собой лишь ог­раждающие конструкции и поэтому решаются как самонесущие или навесные. Конструктивная система покрытия может быть беспрогонной или с прогонами. В первом случае по несущим конструкциям покрытия укладывают крупноразмерные плиты (па­нели). Во втором случае вдоль здания укладывают прогоны, а по ним в поперечном направлении — плиты небольшой длины. Беспрогонная схема покрытия по затратам материала более экономична.

При шаге колонн каркаса 12 м и более возникает необходимость устройства подстропильных конструкций, на которые через 6 или 12 м устанавливают ригели (балки) или фермы. В случае, когда отсут­ствует подвесной транспорт и несущей конструкцией ограждающей части покрытия служат железобетонные плиты длиной 12 м, надобность в подстропильных конструкциях при шаге колонн каркаса, равном пролету плит, отпадает.

В некоторых промышленных зданиях, например цехах металлургических заводов, подстропильные конструкции имеют значительные пролеты, в мартеновских цехах, где печи размещены в средней части здания, колонны каркаса среднего ряда распо­лагают с шагом 36 м.

Рис.3. Устройство подстропильных конструкций больших пролетов. а,б – в главном здании мартеновского цеха с печами емкостью 500 т (а — поперечный разрез; б — продольный разрез); в — в прокатном цехе, Р— разливочный пролет. П печной пролет; 1 — разливочный кран грузоподъемностью 350/75/15 т; 2 — заливочный край грузоподъемностью 180/50т; 3 — консольно-поворотный передвижной кран грузоподъемностью Зт; 4 — консольный передвижной кран грузподъемностью 3 т, 5 — шихтовый открылок; 6 — защитный экран, 7 — подкрановые балки. 8 — стропильные фермы; 9 — подстропильные фермы, 10 — отрезки колонн

Подстропильные конструкции выполняют в виде ферм, которые воспринимают либо нагрузку от покрытия, либо нагрузку от мостовых кранов.

Подстропильные фермы, перекрывающие пролет 72 м, выполнены по типу стальных мостовых ферм с клепаными соединениями. В данном случае они воспринимают кроме нагрузки подкрановых балок нагрузки от отрезков колонн, которые вклепаны в подстропильные фермы.

Покрытия с несущими конструкциями в виде железобетонных балок или ферм с уложенными по ним плитами имеют приведенную толщину бетона 80—100 мм при собственной массе (весе) 1 м2 покрытия 200— 250 кг. При такой массе покрытия значительную часть бетона и арматурной стали расходуют на то, чтобы воспринять собственную массу конструкции. Поэтому наряду с этими конструкциями покрытий в настоящее время широко распространены облегченные конструкции с применением металлического профилированного настила с легким утеплителем, укладываемого по прогонам.

Весьма перспективны покрытия в виде тонкостенных пространственных конструкций: оболочек, сводов, складок и др., примеры которых рассмотрены далее. Известны решения про­странственных армоцементных покрытий, масса 1 м которых 45—55 кг, а приведенная толщина оболочки 15— 20 мм.

Многоэтажные промышленные здания проектируют, как правило, с полным сборным железобетонным каркасом и самонесущими или навесными стенами и, в отдельных случаях, с неполным каркасом и несущими стенами. Основные элементы каркаса — колонны, ригели, плиты перекрытий и связи. Междуэтажные перекрытия выполняют из сборных железобетонных конструкций двух типов: балочные и безбалочные.

При безбалочных перекрытиях функцию ригелей выполняют железобетонные плиты, располагаемые по разбивочным осям колонн. Колонны и ригели, соединенные жестко в узлах между собой, образуют рамы каркаса, которые могут располагаться поперек, вдоль или одновременно в обоих направлениях.

Междуэтажные железобетонные перекрытия служат жесткими горизонтальными связями: они распределяют горизонтальную (ветровую) нагрузку между элементами каркаса и обеспечивают совместную пространственную работу всех элементов каркаса здания.

Функцию вертикальных связей выполняют поперечные или продольные железобетонные стены, или крестообразные стальные элементы, устанавливаемые между колоннами, или жесткое ядро, образуемое сочетанием поперечных и продольных железобетонных стен, образующих лестничные клетки, лифты.

Сборные железобетонные каркасы могут быть решены по рамной, рамно-связевой или связевой системе. При рамной системе каркаса пространственная жесткость здания обеспечивается работой самого каркаса, рамы которого воспринимают как горизонтальные, так и вертикальные нагрузки. При рамно-связевой системе вертикальные нагрузки воспринимаются рамами каркаса, а горизонтальные — рамами и вертикальными связями (диафрагмами). При связевой системе вертикальные нагрузки воспринимаются колоннами каркаса, а горизонтальные — вертикальными связями.

Рамно-связевые системы имеют некоторые преимущества по сравнению с рамами, так как упрощаются узловые сопряжения элементов каркаса и их можно унифицировать, достигая неко­торое сокращение расхода стали за счет облегчения закладных деталей в стыках и уменьшения арматуры в колоннах.

В тех случаях, когда поперечные стены или лестничные клетки отсутствуют или расстояние между ними очень велико, а также когда перекрытия ослаблены отверстиями, обеспечить удовлетворительную работу сборного железобетонного каркаса рамно-связевой системы не представляется возможным. В таких случаях применяют сборный каркас рамной системы. В отдельных случаях каркас может быть решен с балочной конструкцией перекрытия и жестким железобетонным монолитным ядром. Ядро на всю высоту здания выполняют в подвижной опалубке.

Требования пожарной безопасности в конструктивных решениях промышленных зданий сказываются прежде всего в устройстве противопожарных преград., т. е. противопожарных стен (брандмауэров), противопожарных зон, а в многоэтажных зданиях — в устройстве несгораемых перекрытий.


Рис.4. Противопожарные преграды. а – поперечная противопожарная стена, б – продольная противопожарная стена, в – противопожарная зона, г – расположение противопожарных преград в плане.

Противопожарные преграды разделяют объем здания на отдельные части, ограничивая при возникновении пожара распространение огня пределами одной части здания. Кроме того, с помощью противопожарных преград выделяют наиболее огнеопасные помещения.

Противопожарные преграды выполняют из несгораемых конструкций. Противопожарные стены располагают поперек или вдоль здания, разделяя междуэтажные перекрытия, покрытия, фонари и другие конструктивные элементы из несгораемых или трудносгораемых материалов. Противопожарные стены устанавливают на самостоятельные фундаменты либо на несущие несгораемые конструкции перекрытий.

Противопожарные стены выполняют выше уровня кровли на 0,6 м, если хотя бы один из элементов покрытия, за исключением кровли, выполнен из сгораемых материалов, и на 0,3 м если все элементы покрытия, за исключением кровли, выполнены из трудносгораемых и несгораемых материалов.

Противопожарные стены зданий с несгораемыми покрытиями могут не разделять покрытий и не возвышаться над кровлей независимо от группы ее возгораемости.

В цехах, оборудованных мостовыми кранами, противопожарные стены располагают только в верхней части здания. Расстояния между противопожарными степами назначают в зависимости от категории пожарной опасности производства. степени огнестойкости, этажности здания и приводятся в строительных нормах и правилах. Устройство проемов в противопожарных стенах не рекомендуется.

Противопожарные зоны устраивают шириной не менее 6 м. Они перерезают здание по всей его ширине. На участках противопожарных зон все конструктивные элементы здания вы­полняют из несгораемых материалов. Если противопожарная зона расположена вдоль здания, то она представляет собой противопожарный пролет, все конструкции которого изготовляют также из несгораемых материалов. По краям противо­пожарной зоны устраивают из несгораемых материалов гребни, размер которых принимают аналогично выступам противопожарных стен.

Читать по теме:

 

Список литературы

  1. Шубин, Л. Ф. Архитектура гражданских и промышленных зданий : учеб. для вузов. В 5 т. / Л. Ф. Шубин. – М. : Стройиздат, 1986 – Т.5: Промышленные здания – 335 с.
  2. Архитектура промышленных предприятий зданий и сооружений: справочник проектировщика. – М. : Стройиздат, 1990. – 638 с.
  3. Архитектурное проектирование промышленных объектов / В. И. Аникин [и др.]; под общ. ред. В. И. Аникина. – Минск : БГПА, 2000. – 207 с.
  4. Ким, А. А. Промышленная архитектура / А. А. Ким. – М. : Стройиздат, 1988. – 244 с.
  5. Морозова, Е. Б. Архитектура промышленных объектов: прошлое, настоящее и будущее / Е. Б. Морозова. – Минск : УП «Технопринт», 2003. – 316 с.
  6. Хромец, Ю. Н. Современные конструкции промышленных зданий / Ю. Н. Хромец. – М. : Стройиздат, 1982. – 351