ТехЛиб СПБ УВТ

Библиотека Санкт-Петербургского университета высоких технологий

Происхождение и условия нахождения минералов

b72bdad959c30da077502ac9ed4f5Минералогия не ограничивается определением свойств минералов, она исследует также происхождение, условия нахождения и природные ассоциации минералов. Со времени возникновения Земли примерно 4,6 млрд. лет назад многие минералы разрушились в результате механического дробления, химических преобразований или плавления. Но элементы, слагавшие эти минералы, сохранились, перегруппировались и образовали новые минералы.

Таким образом, существующие ныне минералы являются продуктами процессов, развивавшихся на протяжении геологической истории Земли.

Главным объектом геологических, в том числе и минералогических исследований является земная кора, под которой подразумевается самая верхняя оболочка земного шара, доступная непосредственному наблюдению.Наши фактические знания о строении и химическом составе земной коры основываются почти исключительно на наблюдениях над самыми поверхностными частями нашей планеты.

Горообразующие процессы, совершавшиеся в различные геологические эпохи и приводившие к образованию высоких горных хребтов, подняли из глубины самые различные породы, не образующиеся вблизи поверхности Земли. Наиболее глубинные по происхождению горные породы из доступных прямому изучению — мантийные ксенолиты, обнаруживаемые в трубках взрыва, — являются объектом пристального внимания исследователей. Их изучение дает возможность, как показывают геологические наблюдения и подсчеты, получить более или менее реальное представление о составе и строении земного шара только до глубины 100–150 км (радиус же его превышает 6300 км).

О строении и составе глубоких недр земного шара можно судить лишь на основании косвенных данных. Как показывает сопоставление плотностей всего земного шара (5,527) и земной коры (2,7–2,8), внутренние части нашей планеты должны обладать значительно большей плотностью, чем поверхностные. Различные данные (геофизические наблюдения, данные сравнения Земли с другими космическими телами, состав метеоритов и пр.) дают основания предполагать, что это обстоятельство обусловлено не только увеличением с глубиной давления, но и изменением состава внутренних частей нашей планеты.

Согласно современным моделям, построенным на основании геофизических данных, в строении Земли выделяется несколько концентрических оболочек (геосфер), различающихся по физическим свойствам и составу.

Характеристики геосфер Земли

Оболочка Индекс Нижняя граница, км Плотность Компонентный состав
Кора A 10-30 2,80–2,85 SiO2, Al2O3,FeO, CaO, MgO, Na2O, K2О
Верхняя мантия B 350–400 2,9–3,5 SiO2, MgO, FeO, CaO, Al2O3
Переходная зона C 770 3,8–4,2 SiO2, MgO, FeO, CaO, Al2O3
Нижняя мантия D 2875 4,5–5,6 SiO2, MgO, FeO, Fe, MgS, FeS
Внешнее ядро E 4711 9,8–12,2 FeO, Fe, FeS, Si, Ni, H, C
Переходная зона F 5160 12,2–12,5 Fe, FeS, Ni, H, C
Внутреннее ядро G 6371 12,7–14,0 Fe, Ni, H, C

Состав земной коры

Впервые состав твердой части земной коры в весовых процентах подсчитал американский исследователь Ф. Кларк в 1889 г. Большая работа по уточнению полученных цифр была проделана В. И. Вернадским, А. Е. Ферсманом, И. и В. Ноддаками, Г. Гевеши, В. М. Гольдшмидтом и А. П. Виноградовым. Последний подсчитал средний химический состав лишь литосферы (без учета гидросферы и атмосферы).

Из более чем ста химических элементов, приведенных в периодической таблице элементов Менделеева, лишь немногие пользуются широким распространением в земной коре. Такие элементы в таблице располагаются преимущественно в верхней ее части, т. е. относятся к числу элементов с малыми порядковыми номерами.

Подавляющее большинство этих элементов в земной коре присутствует почти исключительно в виде химических соединений. К числу элементов, встречающихся в самородном виде, относятся очень немногие. Те и другие возникают в результате химических реакций, которые протекают в земной коре при различных геологических процессах, приводящих к образованию самых разнообразных по составу массивов горных пород и месторождений полезных ископаемых.

Если главнейшие элементы расположить в порядке их процентного (весового) содержания в земной коре на группы по декадам, то получится такая картина.

Весовые кларки главнейших химических элементов, в процентах (1932 г.)

I O-49,13
Si-26,00
IV F-0,08
Ra-0,05
N-0,04
Sr-0,035
Cr-0,03
Zr-0,025
V-0,02
Ni-0,02
Zn-0,02
B-0,01
Cu-0,01
VII Se-8.10-5
Sb-5.10-5
Nb-3,2.10-5
Ta-2,4.10-5
Pt-2.10-5
Bi-1.10-5
Ag-1.10-5
In-1.10-5
XII Ra-1.10-10
II Al-7,45
Fe-4,20
Ca-3,25
Na-2,40
K-2,35
Mg-2,35
H-1,00
V Sn-0,008
W-0,007
Li-0,005
Be-0,003
Co-0,002
Pb-0,0016
Mo-0,001
Cs-0,001
Br-0,001
Th-0,001
VIII He-1.10-6
Te-1.10-6
III Ti-0,61
C-0,35
Cl-0,20
P-0,12
S-0,10
Mn-0,10
VI Cd-5.10-4
As-5.10-4
U-4.10-4
Ar-4.10-4
Hg-1.10-4
J-1.10-4
Ga-1.10-4
IX Au-1.10-7
Re-1.10-7

Из таблицы видно, что подавляющая масса минералов земной коры должна представлять соединения элементов первых двух декад, на долю которых в весовом выражении приходится 98,13%. В самом деле, в земной коре чрезвычайно широко распространены кислородные соединения кремния, алюминия, железа, а также щелочноземельных и щелочных металлов — кальция, магния, натрия и калия. К их числу относятся главным образом окислы и кислородные соли (силикаты, алюмосиликаты и др.), входящие в состав различных горных пород, слагающих земную кору.

ГЛАВНЫЕ ЭЛЕМЕНТЫ, ВХОДЯЩИЕ В СОСТАВ ЗЕМНОЙ КОРЫ

Элемент

Массовые проценты

Объемные проценты

Кислород

46,40

94,04

Кремний

28,15

0,88

Алюминий

8,23

0,48

Железо

5,63

0,49

Кальций

4,15

1,18

Натрий

2,36

1,11

Магний

2,33

0,33

Калий

2,09

1,49

sostzemkor Большая часть земной коры сложена изверженными породами, которые местами перекрыты относительно маломощным покровом осадочных и метаморфических пород. Поэтому состав земной коры в принципе соответствует усредненному составу изверженной породы. Восемь элементов составляют 99% массы земной коры и соответственно 99% массы слагающих ее минералов.

По элементному составу земная кора представляет собой каркасную постройку, состоящую из ионов кислорода, связанных с более мелкими ионами кремния и алюминия.

Таким образом, главными минералами являются силикаты, на долю которых приходится ок. 35% всех известных минералов и ок. 40% — наиболее распространенных.

Важнейшие из них — полевые шпаты (семейство алюмосиликатов, содержащих калий, натрий и кальций, реже — барий). Другие распространенные породообразующие силикаты представлены кварцем (впрочем, он чаще относится к оксидам), слюдами, амфиболами, пироксенами и оливином.
 Кларки металлов, играющих большую роль в промышленности, в подавляющем большинстве выражаются ничтожными величинами и попадают в последние столбцы элементов, разбитых на декады по степени распространения.

Наиболее распространенными элементами являются: О, Si, Al, Fe, Ca, Na, К, Mg, Ti, H и С. На долю всех остальных элементов, встречающихся в земной коре, приходится всего лишь несколько десятых процента (по весу).

Подавляющее большинство этих элементов в земной коре присутствует почти исключительно в виде химических соединений.

К числу элементов, встречающихся в самородном виде, относятся очень немногие. Те и другие возникают в результате химических реакций, которые протекают в земной коре при различных геологических процессах, приводящих к образованию самых разнообразных па составу массивов горных пород и месторождений полезных ископаемых.

 Распространенность главных металлов в земной коре

Декады II III IV V VI VII VIII IX-XII
Металлы Al,Fe,
Mg
Mn Cr,V,
Ni,Zn,
Cu
Sn,W,
Be,Co,
Pb,Mo
Cd,As,
U,Hg,
Ga
Sb,Nb,
Ta,Pt,
Bi,Ag,
Ti,In
Os,Ru,
Rh,Pd,
Ir
Au,Re,
Ra

 

Особенности распределения тяжелых металлов в земной коре

Многие из указанных редких в земной коре элементов под влиянием совершающихся в природе геохимических процессов нередко образуют исключительно богатые скопления минерального вещества, носящие название рудных месторождений. Если бы не существовало процессов, приводящих к образованию таких месторождений, которые имело бы смысл разрабатывать с целью извлечения ценных для промышленности металлов, то можно с уверенностью сказать, что не было бы и столь мощного развития техники и культуры, какое наблюдается в настоящее время.

 Распространенность элементов в верхней части литосферы

На рисунке  даны логарифмы атомных кларков (H) как функция порядкового номера (Z), причем кислород принят за единицу. По оси абсцисс расположены порядковые номера химических элементов, а по оси ординат — логарифмы их атомных кларков. Можно видеть, что с увеличением порядкового номера кривые кларков как четных, так и нечетных элементов в общем обнаруживают тенденцию к понижению. Это означает, что для большинства химических элементов имеет место обратно пропорциональная зависимость их среднего содержания в земной коре от порядкового номера, хотя встречаются и исключения (например, для Li, Be, В и др.).

Весьма характерно, что кларки таких металлов, как ванадий, цезий, галлий и др., во много раз выше кларков ртути, висмута, серебра, золота и др. Но, несмотря на их весьма ценные свойства, они не распространены в человеческом быту, так как их месторождения с промышленными концентрациями в природе крайне редки.Природные соединения тяжелых металлов представляют собой в основном сравнительно простые соединения. Часть этих элементов (Fe, Mn, Sn, Сr, W, Nb, Та, Th, U) преимущественно распространена в виде кислородных соединений, но зато многие другие элементы (Fe, Ni, Co, Zn, Cu, Pb, Hg, Mo, Bi, As, Sb, Ag и др.) встречаются главным образом в виде скоплений сернистых, мышьяковистых и сурьмянистых соединений. Железо совмещает в себе свойства сидерофильных, литофильных и халькофильных элементов, обладая заметным сродством как к кислороду, так и к сере.Если сравнить распространенность химических элементов в земной коре в атомных кларках с числами минералов, в которые они входят, то между ними, за небольшим исключением, устанавливается некоторая прямая (симбатная) зависимость. Это имеет место преимущественно для элементов, обладающих малыми атомными весами:

Элемент Атомный кларк Число минералов
O 53,39 1221
H 17,25 798
Si 16,11 377
Al 4,80 268
Na 1,82 100
Mg 1,72 105
Ca 1,41 194
Fe 1,31 170
K 1,05 43
C 0,51 194
Ti 0,22 30
Cl 0,10 67
F 0,07 50

Для многих тяжелых металлов подобная зависимость не устанавливается. Так, теллур, атомный кларк которого в земной коре примерно в 100 раз меньше, чем кларк селена, в природных условиях образует около 40 самостоятельных минералов, в то время как для селена их известно всего 28, и то главным образом в ассоциации с серой. Для цинка, с атомным кларком, в 50 раз большим по сравнению с кларком свинца, мы имеем 26 минералов, тогда как для свинца — около 130, и т. д.

Указанные различия несомненно вызываются химическими свойствами самих элементов, обусловленными строением их ионов и определяемыми положением этих элементов в периодической системе Менделеева. Для элементов с одинаковыми свойствами, аналогичными строением и размерами ионов, но с различными концентрациями в данном растворе или расплаве, естественно ожидать, что при кристаллизации элементы с меньшей концентрацией будут входить в кристаллические решетки, образуемые господствующими элементами, как бы растворяясь в них.

Если же данный элемент в окружающей среде не находит аналогичных себе по размерам и строению ионов других элементов, то, в каком бы количестве он ни присутствовал в растворе, при кристаллизации он должен образовать самостоятельное соединение.

Весьма показательно, что двухвалентный марганец в главной своей массе входит в состав минералов в виде изоморфной примеси к двухвалентным железу и кальцию, но зато четырехвалентный марганец всегда образует явно индивидуализированные соединения.

Этим же объясняется, что такие элементы, как рубидий, скандий, галлий, гафний, индий, рений и др., обладающие низкими атомными кларками, в природе совершенно не образуют самостоятельных минералов, а находятся в рассеянном состоянии, присутствуя в виде изоморфной примеси к другим элементам. В значительной мере это относится и к таким, более распространенным элементам, как селен, ванадий, цезий, кадмий и др. Наоборот, элементы с очень низкими атомными кларками — теллур, золото, группа платиновых металлов, висмут и др. — сравнительно часто устанавливаются в виде самостоятельных минералов.

Важно указать, что общее число природных химических соединений несравненно меньше, чем их можно получить искусственным путем. Число одних только неорганических соединений, получаемых в лабораторных условиях, выражается многими сотнями тысяч. В природе же известно всего лишь около 1700 минералов, включая и их разновидности. Это ни в коем случае нельзя объяснять слабой изученностью состава земной коры. За последние десятилетия число ежегодно открываемых новых минералов перестало превышать 10-20, несмотря на совершенствование мето/supдик subи pтщательность проводимых исследований. Возможности же синтеза искусственных соединений все более и более расширяются. Установлено, например, что элементы группы платины способны дать огромное количество самых разнообразных и сложных химических соединений, а в природных условиях известно буквально не больше трех десятков минералов, и то преимущественно в виде самородных металлов.

Изверженные породы

33fde409e3d6c4ad208abd6771c72bbdИзверженные, или магматические, породы образуются при охлаждении и кристаллизации расплавленной магмы. Процентное содержание различных минералов и, следовательно, тип образовавшейся породы зависят от соотношения элементов, содержавшихся в магме во время ее затвердевания.

Каждый тип изверженной горной породы обычно состоит из ограниченного набора минералов, называющихся главными породообразующими. В дополнение к ним могут присутствовать в меньших количествах второстепенные и акцессорные минералы.

Например, главными минералами в граните могут быть калиевый полевой шпат (30%), натрий-кальциевый полевой шпат (30%), кварц (30%), слюды и роговая обманка (10%). В качестве акцессорных минералов могут присутствовать циркон, сфен, апатит, магнетит и ильменит.

430

Изверженные породы обычно классифицируют в зависимости от вида и количества каждого из содержащихся в них полевых шпатов. Однако в некоторых породах полевой шпат отсутствует. Далее изверженные породы классифицируют по их структуре, которая отражает условия затвердевания породы. Медленно кристаллизующаяся глубоко в недрах Земли магма порождает интрузивные плутонические породы с крупно- или среднезернистой структурой. Если магма извергается на поверхность в виде лавы, она быстро остывает и возникают тонкозернистые вулканические (эффузивные, или излившиеся) породы. Иногда некоторые вулканические породы (например, обсидиан) остывают столь быстро, что не успевает произойти их кристаллизация; подобные породы имеют стекловидный облик (вулканические стекла).

Осадочные породы. Когда коренные породы выветриваются или размываются, обломочный или растворенный материал оказывается включенным в состав осадочных пород. В результате химического выветривания минералов, происходящего на границе литосферы и атмосферы, формируются новые минералы, например, глинистые — из полевого шпата.

Некоторые элементы высвобождаются при растворении минералов (например, кальцита) в поверхностных водах. Однако другие минералы, например кварц, даже механически раздробленные, сохраняют устойчивость к химическому выветриванию.

fb8b8360dce2bb144eb6d7ba31e73

Высвободившиеся при выветривании механически и химически устойчивые минералы с достаточно высокой плотностью образуют на земной поверхности россыпные месторождения. Из россыпей, чаще всего аллювиальных (речных), добывают золото, платину, алмазы, иные драгоценные камни, оловянный камень (касситерит), минералы других металлов.

В определенных климатических условиях формируются мощные коры выветривания, нередко обогащенные рудными минералами. С корами выветривания бывают сопряжены промышленные месторождения бокситов (руд алюминия), скопления гематита (железных руд), водных силикатов никеля, минералов ниобия и других редких металлов.

Основная масса продуктов выветривания выносится по системе водотоков в озера и моря, на дне которых образует слоистую осадочную толщу.

134215589946287-big

Глинистые сланцы сложены в основном глинистыми минералами, а песчаник состоит преимущественно из сцементированных зерен кварца. Растворенный материал может извлекаться из воды живыми организмами или выпадать в осадок в результате химических реакций и испарения.

Карбонат кальция поглощается из морской воды моллюсками, которые строят из него свои твердые раковины. Большая часть известняков образуется в результате аккумуляции раковин и скелетов морских организмов, хотя частично карбонат кальция осаждается химическим путем.

p057-01Эвапоритовые залежи формируются в результате испарения морской воды. Эвапориты — обширная группа минералов, в число которых входят галит (поваренная соль), гипс и ангидрит (сульфаты кальция), сильвин (хлорид калия); все они имеют важное практическое применение.

Эти минералы осаждаются также при испарении с поверхности соляных озер, но в этом случае повышение концентрации редких элементов может привести к дополнительному осаждению некоторых других минералов. Именно в такой обстановке образуются бораты.

Большей частью бораты — соли не самой борной кислоты H3BO3, а полиборных кислот nB2O3•mH2O, не выделенных в свободном состоянии (например, тетраборной кислоты H2B4O7 или 2B2O3•H2O). Так, при нейтрализации H3BO3 едким натром получается тетраборат натрия — бура.

2NaOH + 4H3BO3 = Na2B4O7 + 7H2O. но при нагревании идет другая реакция Из боратов растворимы в воде главным образом соли щелочных металлов.

bakedclay800Метаморфические породы. Региональный метаморфизм. Изверженные и осадочные породы, захороненные на большой глубине, под действием температуры и давления испытывают преобразования, называющиеся метаморфическими, в ходе которых меняются первоначальные свойства горных пород, а исходные минералы перекристаллизовываются или полностью трансформируются.

В результате минералы обычно располагаются вдоль параллельных плоскостей, придавая породам сланцеватый облик. Тонкосланцеватые метаморфические породы называются сланцами. Они часто бывают обогащены пластинчатыми силикатными минералами (слюдой, хлоритом или тальком).

Более грубосланцеватые метаморфические породы — гнейсы; в них чередi style=»mso-bidi-font-style: normal;»уются полосы кварца, полевого шпата и темноцветных минералов. Когда сланцы и гнейсы содержат какой-либо типично метаморфический минерал, это о/pтражается в названии породы, например, силлиманитовый или ставролитовый сланец, кианитовый или гранатовый гнейс.

Контактовый метаморфизм. При подъеме магмы в верхние слои земной коры в породах, в которые она внедрилась, обычно происходят изменения, т.н. контактовый метаморфизм. Эти изменения проявляются в перекристаллизации первоначальных или образовании новых минералов.

Степень метаморфизма зависит как от типа магмы, так и от типа породы, которую она пронизывает. Глинистые и близкие им по химическому составу породы преобразуются в контактовые роговики (биотитовые, кордиеритовые, гранатовые и др.).

Наиболее интенсивные изменения происходят, когда гранитная магма внедряется в известняки: термическое воздействие является причиной их перекристаллизации и образования мрамора; в результате химического взаимодействия с известняками отделяющихся от магмы растворов образуется большая группа минералов (силикаты кальция и магния: волластонит, гроссуляровый и андрадитовый гранаты, везувиан, или идокраз, эпидот, тремолит и диопсид). В некоторых случаях при контактовом метаморфизме привносятся рудные минералы, что делает породы ценными источниками получения меди, свинца, цинка и вольфрама.

60239_html_md130d20Метасоматоз. В результате регионального и контактового метаморфизма не происходит существенного изменения химического состава исходных пород, а меняются лишь их минеральный состав и внешний облик. Когда растворами привносятся одни элементы и выносятся другие, происходит значительное изменение химического состава пород. Такие вновь образовавшиеся породы называются метосоматическими.

Например, взаимодействие известняков с растворами, выделяемыми гранитной магмой в ходе кристаллизации, приводит к образованию вокруг гранитных массивов зон контактово-метасоматических руд — скарпов, которые нередко вмещают оруденение.

РУДНЫЕ МЕСТОРОЖДЕНИЯ И ПЕГМАТИТЫ

m-amaz_3_e7e8aec3Химический состав крупнозернистого гранита может существенно отличаться от состава исходной магмы. Изучение пород показало, что минералы выделяются из магмы в определенной последовательности. Такие богатые железом и магнием минералы, как оливин и пироксены, а также акцессорные минералы кристаллизуются в первую очередь. Из-за более высокой плотности, чем окружающий расплав, в результате процесса магматической сегрегации они оседают вниз. Полагают, что таким образом образуются дуниты — породы, состоящие почти целиком из оливина.

Сходное происхождение приписывается некоторым крупным скоплениям магнетита, ильменита и хромита, которые являются рядами соответственно железа, титана и хрома. Однако состав расплава, остающегося после удаления минералов путем магматической сегрегации, не полностью идентичен составу образующейся из него породы.

В ходе кристаллизации расплава в нем возрастает концентрация воды и других летучих компонентов (например, соединений фтора и бора), а вместе с ними многих других элементов, атомы которых слишком велики или слишком малы для вхождения в кристаллические структуры породообразующих минералов.

Выделившиеся из кристаллизующейся магмы водные флюиды могут подниматься по трещинам к поверхности Земли, в область более низких температур и давлений. Это обусловливает отложение минералов в трещинах и образование жильных месторождений.

Некоторые жилы сложены в основном неметаллическими минералами (кварцем, кальцитом, баритом и флюоритом). Другие жилы содержат минералы таких металлов, как золото, серебро, медь, свинец, цинк, олово и ртуть; соответственно, они могут представлять собой ценные рудные месторождения. Поскольку подобные месторождения образуются при участии нагретых водных растворов, их называют гидротермальными.

Следует сказать, что самые крупные гидротермальные месторождения — не жильные, а метасоматические; они представляют собой пластообразные или иной формы залежи, образовавшиеся путем замещения горных пород (чаще всего известняков) рудоносными растворами. О минералах, слагающих такие месторождения, говорят, что они имеют гидротермально-метасоматическое происхождение. Пегматиты генетически связаны с кристаллизующейся гранитной магмой.

Масса высокоподвижного флюида, еще богатая элементами, входящими в состав породообразующих минералов, может быть выброшена из магматической камеры во вмещающие породы, где она кристаллизуется с образованием тел грубозернистой структуры, сложенных в основном породообразующими минералами — кварцем, полевым шпатом и слюдой. Такие тела горных пород, называемые пегматитами, весьма изменчивы по величине. Максимальная протяженность большинства пегматитовых тел — несколько сотен метров, но самые крупные из них достигают длины 3 км, а у небольших она измеряется первыми метрами.

b72bdad959c30da077502ac9ed4f5935В пегматитах содержатся крупные кристаллы отдельных минералов, в том числе самые большие в мире полевошпатовые длиной в несколько метров, слюды — до 3 м в поперечнике, кварца — массой до 5 т. В некоторых пегматитообразующих флюидах концентрируются редкие элементы (часто в форме крупных кристаллов), например, бериллий — в берилле и хризоберилле, литий — в сподумене, петалитите, амблигоните и лепидолите, цезий — в полуците, бор — в турмалине, фтор — в апатите и топазе.

Большинство этих минералов имеют ювелирные разновидности. Промышленное значение пегматитов отчасти связано с тем, что они являются источником драгоценных камней, но главным образом — высокосортных калиевого полевого шпата и слюды, а также рудами лития, цезия и тантала, отчасти бериллия.

 b72bdad959c30da077502ac9ed4f5935Полевые шпаты