Химические и физико-химические свойства
Химические свойства характеризуют способность материала вступать в химическое взаимодействие с веществами внешней среды, в которой он находится, или сохранять свой состав и структуру в условиях инертной окружающей среды. Последнее связано с тем, что некоторые материалы за счет неустановившегося равновесия внутренних химических связей склонны к самопроизвольным структурным изменениям («старению»). Оба явления могут изменить первоначальные основные свойства материала, иногда улучшая (например, взаимодействие вяжущих веществ с водой), а в большинстве случаев ухудшая показатели свойств, что приводит к уменьшению срока нормальной службы конструкций или сооружений (например, разрушение бетонных конструкций агрессивными жидкостями и газами, старение пластмасс).
Химическая (коррозионная) стойкость — свойство материала сопротивляться коррозионному воздействию среды (жидкой, газообразной, твердой) или физических воздействий (облучение, электрический ток).
При контакте с агрессивной средой в структуре материала происходят необратимые изменения, что вызывает снижение его прочности и преждевременное разрушение конструкции.
Основными агрессивными агентами, вызывающими коррозию строительных материалов, являются: пресная и соленая вода, минерализованные почвенные воды, растворенные в дождевой воде газы (8О3, 8О2, СО2, МЭ2) от промышленных предприятий и автомашин. На промышленных предприятиях коррозию строительных материалов часто вызывают более сильные агенты: растворы кислот и щелочей, расплавленные материалы и горячие газы.
Металлы и сплавы подвергаются коррозии под действием сред, не проводящих электрический ток, например некоторых газов при высокой температуре, нефтепродуктов, содержащих органические кислоты. Такую коррозию металлов называют химической. Чаще металлы, в том числе стальная арматура железобетонных конструкций, корродируют в средах, проводящих электрический ток, — водных растворах солей, кислот, щелочей. В этом случае возникает электрохимическая коррозия.
Особым видом коррозии является биокоррозия — разрушение материалов под действием живых организмов (например, грибков, микробов).
Биокоррозия — это не только гниение органических материалов (древесины, бумаги и др.), но и разрушение бетона и металла продуктами жизнедеятельности поселившихся на них микроорганизмов.
Изменение структуры и химического состава пластмасс под влиянием внешней среды называется старением. Наиболее вредные воздействия на пластмассы оказывают солнечное облучение, кислород воздуха и повышенные температуры.
Химическая активность — это свойство материалов подвергаться химическим превращениям под влиянием воды, температуры, солнечной радиации или при взаимодействии с другими веществами.
Химические превращения наблюдаются при хранении и технологическом использовании материалов, а также в период эксплуатации строительных конструкций. Например, длительное хранение во влажной атмосфере вызывает гидратацию и снижение активности цемента. В итоге получается так называемый лежалый цемент, сильно уступающий по качеству свежеизготовленному.
Химическая активность таких материалов, как вяжущие вещества или минеральные добавки, зависит не только от их состава и строения, но и от тонкости измельчения.
К физико-химическим свойствам относят: удельную поверхность порошкообразных материалов, размер и количество пор, степень гидрофобности неорганических порошков и др. Степень измельчения вещества характеризуют удельной поверхностью.
Удельная поверхность — суммарная поверхность всех частиц единицы массы вещества (см/г). Удельная поверхность тонкомолотых материалов достигает больших значений (для портландцемента — 2500…3000 см2/г). Чем больше удельная поверхность, тем быстрее частицы цемента взаимодействуют с водой и соответственно быстрее твердеет цемент.
Дисперсность — характеристика размеров твердых частиц и капель жидкости. Многие строительные материалы (гипсовые вяжущие, цемент, глины, пигменты и т. п.) находятся в тонкоизмельченном (дисперсном) состоянии и обладают большой суммарной поверхностью частиц. Величина, характеризующая степень раздробленности материала и развитости его поверхности, называется удельной поверхностью sye — поверхность единицы объема (см2/см3) или массы (см2/г) материала.
Физико-химические свойства поверхностного слоя дисперсных частиц сильно отличаются от свойств этого же вещества «в массе». Причина этого в том, что атомы (молекулы) вещества, находящиеся внутри материала, уравновешены действием окружающих атомов (молекул), в то время как атомы (молекулы) на поверхности вещества находятся в неуравновешенном состоянии и обладают особым запасом энергии. С увеличением удельной поверхности вещества возрастает его химическая активность (например, цемент с удельной поверхностью 3000…3500 см2/г через 1 сут твердения связывает 10… 13 % воды, а с удельной поверхностью 4500…5000 см2/г — около 18 %).
Адгезия — свойство одного материала прилипать к поверхности другого. Адгезия двух различных материалов зависит от природы материала, формы и состояния поверхности, условий контакта и т. д. Она появляется и развивается в результате сложных поверхностных явлений, возникающих на границе раздела фаз, и характеризуется прочностью сцепления при отрыве одного материала от другого. Важное значение адгезионные свойства имеют при получении композиционных материалов и изделий (бетонов разных видов, клееных изделий и конструкций, отделочных материалов).
Многие строительные материалы в процессе их изготовления и применения проходят стадию пластично-вязкого состояния (гипсовое, цементное, глиняное тесто, свежеприготовленные растворные и бетонные смеси, мастики, формуемые материалы из полимеров и т. д.). По своим физическим свойствам пластично-вязкие тела занимают промежуточное положение между жидкими и твердыми телами. Так тесто можно разрезать ножом (что нельзя сделать с жидкостью), но вместе с тем это же тесто принимает форму сосуда, в который оно помещено, т. е. ведет себя, как жидкость. Пластично-вязкие смеси характеризуют реологическими показателями — структурной прочностью, вязкостью и тиксотропией.
Структурная прочность — прочность внутренних связей между частицами материала. Ее оценивают предельным напряжением сдвига, соответствующим напряжению в материале, при котором он начинает течь подобно жидкости. Это происходит тогда, когда в материале нарушаются внутренние связи между его частицами — разрушается его структура.
Вязкость — способность материала поглощать механическую энергию при деформировании образцов. Когда пластично-вязкий материал начинает течь, напряжения в материале зависят уже от скорости его деформации.
Модель упругопластично-вязкого материала можно представить себе как систему последовательно соединенных элементов: пружины (характеризует упругие свойства материала), груза, лежащего на плоскости (пластические свойства), и поршня, движущегося в цилиндре с маслом (вязкость). Если начать тянуть за пружину с возрастающей силой F, то сначала растягивается пружина, а остальные элементы остаются в покое (если силу убрать, система вернется к исходному состоянию). Когда сила F станет равной силе трения Fo, то вся система начнет двигаться. При этом, чтобы увеличить скорость движения, надо преодолеть возрастающее сопротивление масла в поршне, т. е. увеличить силу F.
Тиксотропия — способность пластично-вязких смесей обратимо восстанавливать свою структуру, разрушенную механическими воздействиями. Физическая основа тиксотропии — разрушение структурных связей внутри пластично-вязкого материала, при этом материал теряет структурную прочность и превращается в вязкую жидкость, а после прекращения механического воздействия материал обретает структурную прочность. Явление тиксотропии используют при виброуплотнении бетонных и растворных смесей, при нанесении мастичных и окрасочных составов шпателем или кистью и т. д. вызвать его разрушение (коррозию). Степень разрушения зависит от многих факторов и прежде всего от состава материала и его плотности. Коррозионную стойкость оценивают химическим анализом.
При небольшом модуле основности, когда в неорганическом материале преобладает кремнезем, наблюдается высокая стойкость к кислотам. Когда в составе неорганического материала преобладают основные оксиды и модуль основности достаточно высок, то этот материал обычно нестоек к кислотам, но щелочами не разрушается. Органические материалы (древесина, битумы, пластмассы) при обычных температурах относительно стойки к действию слабых кислот и щелочной среды. Однако значительная часть строительных материалов не обладает достаточной стойкостью к действию агрессивной среды и требует специальной защиты от коррозии.
Читать по теме:
- Основные свойства строительных материалов
- Связь состава, структуры и свойств
- Физические свойства
- Механические свойства стройматериалов
- Химические и физико-химические свойства