ТехЛиб СПБ УВТ

Библиотека Санкт-Петербургского университета высоких технологий

Расчет сборного железобетонного марша

Железобетонный марш шириной 1,1 м для лестницы жилого здания.

Высота этажа 3.0м.

Угол наклона марша , ступени размером .

Бетон класса В25 с расчетными характеристиками:

Rb = 1,45кН/см2; Rbt = 0,105кН/см2; Rb.ser = 1,85кН/см2; Rbt.ser=0,16 кН/см; b2=0,9.

При изготовлении конструкции примем естественное твердение бетона Eb=3,0´103 кН/см2.

Арматура каркасов класса А300: Rs=28 кН/см2; Es=20´103кН/см2; для сеток арматура класса В500: Rs=37,5 кН/см2; Es=17´103 кН/см2.

Нормативное значение временной нагрузки 3 кН/м2.

Коэффициент надежности по назначению здания n=0,95.

 Сбор нагрузок на лестничный марш и определение внутренних усилий в сечениях элемента от внешней нагрузки


Расчетная схема

Собственный вес лестничного марша по каталогу сборных железобетонных конструкций для жилищного строительства: .

Временная нормативная нагрузка для лестниц жилого дома: .

Коэффициент надежности по нагрузке: .

Расчетная нагрузка на 1 м марша:

.

Расчетный изгибающий момент в середине пролета марша:

.

Поперечная сила на опоре:

.

Расчет прочности по нормальным сечениям

     Применительно к типовым заводским формам назначим толщину плиты , ширину .

Расчетный участок плиты

Толщина защитного слоя бетона: .

Расчетная высота сечения: .

Коэффициент:

.

Относительная высота сжатой зоны:

.

Площадь сечения арматуры:


Примем 4Æ12 А300 с As = 4,52 см2.

Расчет прочности по наклонным сечениям

Проверим выполнение условий:

1)    

— коэффициент, учитывающий влияние вида бетона, принимаемый: для тяжелого бетона — ;

— коэффициент, учитывающий влияния продольной силы, т.к. лестничный марш проектируется без предварительного обжатия, то .


2)    

3)    

        — коэффициент, принимаемый для тяжелого бетона

.

Условия выполняется, прочность наклонных сечений обеспечена.

Поперечные стержни каркаса устанавливаем из конструктивных соображений с шагом .

Примем шаг стержней . В середине пролета шаг поперечных стержней .

Фактическая длина марша

Определение геометрических характеристик сечения

Коэффициент, равный отношению модулей упругости двух материалов:

Площадь приведенного сечения составит:


        — площадь сечения бетона:


Статический момент приведенного сечения относительно оси I-I, проходящей по нижней грани сечения:


Расстояние от центра тяжести сечения до наиболее растянутой грани (до оси I-I):


Расстояние от центра тяжести сечения до наиболее сжатой грани (до оси II-II):


Момент инерции сечения относительно оси, проходящей через центр тяжести данного сечения:


Момент сопротивления относительно оси I-I:


Момент сопротивления приведенного сечения относительно оси II-II:


 Расчет по трещиностойкости

Проверим выполнение условия


— момент внутренних усилий, воспринимаемый сечением, перед образованием трещин:


Пластический момент сопротивления сечения:


        — безразмерный коэффициент.



     Условие не выполняется, необходим расчет по раскрытию трещин.

Расчет на раскрытие трещин

Расчет сводится к проверке условия:


— предельно допустимая ширина раскрытия трещин, обеспечивающая сохранность арматуры;

— ширина раскрытия трещин:

— коэффициент, принимаемый для изгибаемых и внецентренно сжатых элементов ;

— коэффициент, принимаемый при стержневой арматуре периодического профиля

— коэффициент армирования сечения:

— приращение напряжений от действия внешней нагрузки:

.

Момент от постоянных нагрузок:

Момент от полной нормативной нагрузки:

— расстояние от центра тяжести площади сечения растянутой арматуры до точки приложения равнодействующей усилий в сжатой зоне сечения над трещиной:

— относительная высота сжатой зоны бетона:

— коэффициент, принимаемый для тяжелого и легкого бетона ;

;

— коэффициент, принимаемый по формуле:

при постоянных нагрузках:

при полных нагрузках:

Тогда при постоянных нагрузках:

при полных нагрузках:

Приращение напряжений:

Тогда

<

Условия выполняются, ширина раскрытия трещин не превышает предельно допустимой величины.

Расчет по деформациям

Расчет сводится к проверке условия:

         — предельно допустимый прогиб элемента; — прогиб элемента:

        — коэффициент, зависящий от расчетной схемы и вида нагрузки: при равномерно распределенной нагрузке —

— полная кривизна изгибаемого элемента;

— кривизна от действия временной расчетной нагрузки:

— коэффициент, учитывающий влияние кратковременной ползучести бетона, принимаемый для тяжелого бетона .

— кривизна от действия постоянной нагрузки:

— коэффициент, учитывающий длительности ползучести бетона, принимаемый для тяжелого бетона .

Общая кривизна:

Прогиб марша:

<.

Условие выполняется, жесткость элемента

обеспечена.