ТехЛиб СПБ УВТ

Библиотека Санкт-Петербургского университета высоких технологий

Особенности проектирования оснований зданий и сооружений, возводимых на засоленных грунтах

imagesCA54YF74Выдержка из Руководства по проектированию оснований зданий и сооружений, составленное в развитие главы СНиП II-15-74 «Основания зданий и сооружений» и приводит рекомендации, детализирующие эти нормы проектирования по вопросам номенклатуры грунтов и методов определения расчетных значений их характеристик; принципов проектирования оснований и прогнозирования изменения уровня грунтовых вод; вопросов глубины заложения фундаментов; методов расчета оснований по деформациям и по несущей способности; особенностей проектирования оснований зданий и сооружений, возводимых на региональных видах грунтов, а также расположенных в сейсмических районах и на подрабатываемых территориях.

Руководство предназначено для использования в проектных и изыскательских организациях, обслуживающих строительство промышленных, жилых и общественных зданий и сооружений.

СОДЕРЖАНИЕ:

Раздел 9   ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ ОСНОВАНИЙ ЗДАНИЙ И СООРУЖЕНИЙ, ВОЗВОДИМЫХ НА  ЗАСОЛЕННЫХ ГРУНТАХ

ОПРЕДЕЛЕНИЕ СУФФОЗИОННОЙ ОСАДКИ ОСНОВАНИЙ, СЛОЖЕННЫХ  ЗАСОЛЕННЫМИ ГРУНТАМИ

 

Раздел 9 ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ ОСНОВАНИЙ ЗДАНИЙ И СООРУЖЕНИЙ, ВОЗВОДИМЫХ НА ЗАСОЛЕННЫХ ГРУНТАХ

9.1 (9.1). Основания, сложенные засоленными грунтами, должны проектироваться с учетом их специфических особенностей, обусловливающих:

образование при длительном замачивании грунта (и фильтрации через него воды) суффозионной осадки Sc, величина которой зависит от генезиса и условий залегания грунтов, зернового и минералогического состава, структуры, коэффициента пористости и природной влажности грунтов, количественного содержания и качественного состава водорастворимых солей, их дисперсности и распределения в массиве основания, химического состава фильтрующей жидкости и условий ее фильтрации, а также от действующей на основание нагрузки;

изменение в процессе выщелачивания солей физико-механических свойств грунта со снижением, как правило, его прочностных характеристик;

набухание засоленных глин в случае их замачивания;

агрессивное воздействие на материал фундаментов и подземных частей зданий и сооружений в результате замачивания засоленных грунтов и растворения содержащихся в них солей.

9.2. Свойства засоленных грунтов, используемые при проектировании оснований зданий и сооружений, должны определяться при инженерных изысканиях площадки по установленному нормативными документами порядку.

В результате проведения инженерно-геологических изысканий в районах распространения засоленных грунтов должны быть установлены:

условия залегания засоленных грунтов (толщина слоя, литологические особенности, распространение по площади и по глубине);

гидрогеологические, гидрологические и гидрохимические условия (минерализация и состав поверхностных и подземных вод; характер их возможного передвижения в грунтах — гравитационное, капиллярное, осмотическое; области питания и разгрузки подземных вод);

прогноз повышения уровня грунтовых вод или длительного обводнения засоленных грунтов в основании фундаментов зданий и сооружений (в процессе их эксплуатации);

форма, размер, характер распределения солей (прослои, линзы, точечные вкрапления и их скопления и т. д.); степень кристаллизации и дисперсности солей (кристаллы, друзы, тонкодисперсные присыпки, соли в виде цемента или обволакивающие частицы);

качественный и количественный состав солей в грунте, типы засоленных грунтов и их пространственное распределение, взаимосвязь степени и характера засоленности с литологическим составом и условиями залегания;

величина суффозионной осадки, характер изменения физико-механических свойств засоленных грунтов во времени в процессе выщелачивания солей;

влияние климатических и геоморфологических условий, а также хозяйственной деятельности человека на развитие процессов засоления и рассоления грунтов, формы и размеры их проявления;

данные о деформациях существующих зданий и сооружений, возведенных в аналогичных грунтовых условиях.

9.3. Образцы засоленных грунтов отбирают при инженерно-геологических изысканиях для определения химических и физико-механических свойств грунтов и установления в лабораторных условиях характера изменения этих свойств в процессе выщелачивания солей.

Для этой цели необходимо отобрать вначале небольшое число характерных типовых образцов, предназначенных для подробных химических анализов. В дальнейшем отбираются образцы для массовых химических анализов, при которых определяют только степень засоления грунтов. Образцы, предназначенные для химического анализа, могут иметь нарушенную структуру и отбираться при сравнительно равномерном распределении солей в грунте в виде сплошной бороздовой пробы весом в 1-1,5 кг. В грунтах, содержащих соли в виде линз, прослоев, скоплений и т. д., опробование должно производиться из каждого характерного участка толщи дифференцированно, с достаточной частотой и параллельностью.

Помимо количественного содержания и качественного состава солей по специальному заданию могут быть определены емкость поглощения и состав обменных катионов засоленного грунта. Указанные определения целесообразно выполнять, например, при исследовании засоленных глин или в случае возможного искусственного засоления грунта под действием сбросов жидких (химических растворов) или твердых отходов производства.

Для лабораторных исследований механических свойств засоленных грунтов следует отбирать образцы естественной влажности и ненарушенной структуры (монолиты).

9.4. Особое внимание при инженерно-геологических изысканиях необходимо уделять оценке свойств грунтов, засоленных водорастворимыми (легко- и среднерастворимыми) солями. Труднорастворимые соли (карбонат кальция СаСО3 и магния МgСО3) растворяются лишь при наличии в воде агрессивной углекислоты, поэтому допустимое содержание карбонатов в грунте должно устанавливаться в зависимости от количества агрессивной углекислоты в воде, гидрогеологической обстановки, свойств грунта, класса и конструктивных особенностей сооружения.

Растворимость некоторых солей в воде при различной температуре приведена в табл. 9.1, в которой растворимость выражена в весовом содержании безводного вещества на 100 г. насыщенного раствора.

Таблица 9.1

Формула вещества Кристаллизационная вода Содержание безводного вещества, г, в 100 г раствора при температуре, °С
0 20 60
NaCl 35,7 35,0 37,3
KCl 22,2 25,5 31,3
СаСl2 6H2O 37,3 42,7
СаСl2 2О 57,8
MgCl2 2О 34,6 35,3 37,9
NaHCO3 6,9 9,6 16,4
Ca(HCO3)2 16,5 16,6 17,5
Na2CO3 10Н2О 7,0 21,5 31,7
MgSO4 7Н2О 26,8 35,5
Na2SO4 10Н2О 4,5 16,1
Na2SO4 45,3
CaSO4 2О 0,18 0,20 0,20
CaCO3 0,0014 0,0015

При проектировании оснований на грунтах, содержащих легкорастворимые соли, необходимо учитывать практически полный вынос указанных солей. Изменение прочностных и деформационных свойств таких грунтов происходит в начальный период обводнения основания эксплуатируемых зданий и сооружений.

Содержание среднерастворимых солей достигает в грунтах десятков процентов. При длительной фильтрации воды и растворов вследствие растворения и выноса солей могут существенно изменяться состав, структурные связи и физико-механические свойства грунта, в том числе происходит дополнительная суффозионная осадка грунта. Растворение и вынос гипса из суглинков, супесей, песков и крупнообломочных грунтов может происходить в сроки, соизмеримые со временем эксплуатации зданий и сооружений.

9.5. Процесс развития суффозионной осадки во времени зависит от комплекса факторов, указанных в п. 9.1 (9.1).

При проектировании оснований, сложенных засоленными грунтами, следует учитывать, что:

уменьшение начальной влажности грунта и количества глинистых частиц увеличивает величину Sс. В суглинисто-супесчаных грунтах с содержанием глинистых частиц более 40% суффозионная осадка практически не происходит;

с ростом степени засоления грунта и начальной пористости конечная величина Sс возрастает;

величина и характер протекания суффозионной осадки во времени зависят от химического состава фильтрующей жидкости. Если в процессе строительства и эксплуатации зданий и сооружений возможно попадание в засоленный грунт химических растворов, при инженерно-геологических изысканиях необходимо опытным путем установить влияние этих растворов на механические свойства грунта;

влияние нагрузки на величину суффозионной осадки установлено лишь качественно — чем выше давление на грунт, тем больше величина Sс, поэтому при производстве инженерно-геологических изысканий необходимо в каждом конкретном случае определять опытным путем (по данным полевых штамповых или лабораторных компрессионно-фильтрационных испытаний) возможную величину суффозионной осадки в диапазоне величин предполагаемых давлений в основании проектируемых сооружений;

величина суффозионной осадки в макропористых грунтах больше, чем в немакропористых.

9.6. В процессе выщелачивания солей из грунта изменяются его физико-механические свойства: пластичность, гранулометрический состав, пористость, удельный вес, фильтрационные свойства, прочностные и деформационные характеристики, состав и степень засоления грунта.

9.7. В процессе инженерно-геологических изысканий должна быть установлена агрессивность засоленных грунтов по отношению к материалу фундаментов и подземных частей зданий и сооружений. В особо агрессивных грунтах рекомендуется применять комплекс мероприятий, надежно предотвращающих коррозию элементов конструкции (использование для изготовления фундаментных блоков и подфундаментной подготовки сульфатостойкого портландцемента, применение синтетических обмазок и др.). В процессе производства работ должен быть налажен контроль за правильным выполнением всех противокоррозионных мероприятий.

9.8(9.2). Основания, сложенные засоленными грунтами, должны рассчитываться в соответствии с требованиями разд. 3 настоящей главы (разд. 3 Рук.). Если засоленные грунты являются при этом просадочными или набухающими, то следует учитывать дополнительные требования соответственно разд. 4 и 5 настоящей главы (разд. 4 и 5 Рук.).

9.9 Суммарная величина вертикальных деформаций основания, сложенного засоленными грунтами, складывается из осадки, вызванной уплотнением грунта от нагрузки, передаваемой фундаментами, и суффозионной осадки от нагрузки фундаментов и собственного веса грунта.

Осадка уплотнения грунта определяется как для обычных незасоленных грунтов с использованием деформационных характеристик грунтов естественной влажности. Суффозионная осадка определяется по указаниям п. 9.12(9.3).

При отсутствии возможности длительного обводнения грунтов и выщелачивания из них солей, суммарная величина вертикальных деформаций основания определяется как для обычных незаселенных грунтов с использованием деформационных характеристик грунтов, установленных в состоянии природной влажности, если WWp, или при влажности на границе раскатывания, если W<Wp.

Расчетное давление на основание R при возможном длительном замачивании засоленного грунта определяется по формуле (3.38) (17) с использованием расчетных значений φII и сII, полученных для засоленных грунтов в водонасыщенном состоянии после выщелачивания солей.

Величина R при закреплении засоленного грунта определяется по формуле (3.38) (17) с использованием расчетных значений φII и сII, полученных для закрепленного засоленного грунта в водонасыщенном состоянии.

При отсутствии возможности длительного замачивания основания, сложенного засоленными грунтами, значение R определяется с использованием φII и сII, установленных для засоленного грунта в состоянии природной влажности, если WWp, или при влажности на границе раскатывания, если W<Wp.

9.10. При проектировании оснований, сложенных засоленными просадочными грунтами, необходимо учитывать, что мероприятия, ликвидирующие просадочность (предварительное замачивание, уплотнение трамбовками, химическое закрепление), значительно уменьшают возможность развития суффозионной (послепросадочной) осадки. Оценка суффозионной осадки в этих грунтах необходима для случая, когда фактическое среднее давление на основание под фундаменты здания не превышает начального просадочного давления рпр засоленного грунта и отсутствуют мероприятия, устраняющие просадочные свойства грунта.

9.11. При наличии в грунтовой толще «гипсового» горизонта (с содержанием гипса в грунте свыше 40 %) заглубление фундамента в нижележащие грунты должно составлять не менее 0,2 м — для суглинков и супесей и 0,3 м — для песков.

9.12(9.3). Суффозионная осадка определяется суммированием осадок отдельных слоев основания, находимых по значениям относительных величин суффозионной осадки, зависящих от свойств грунта, длительности фильтрационного замачивания и действующего давления.

Определение величины суффозионных осадок производится по указаниям прил. 3 к настоящей главе (пп. 9.22 — 9.33 Рук.).

9.13. Величина суффозионной осадки основания Sc определяется путем суммирования деформаций отдельных слоев основания исходя из величины относительной суффозионной осадки δc от суммарных давлений, действующих в рассматриваемом слое, от нагрузки, передаваемой фундаментом, и от собственного веса засоленного грунта.

Нормативные значения характеристики δc определяют по результатам полевых или лабораторных испытаний по указаниям пп. 9.27 (27 прил. 3) и 9.30 (28 прил. 3).

Расчетное значение характеристики δc принимается равным нормативному значению, полагая коэффициент безопасности по грунту kг = 1.

Максимальные и средние суффозионные осадки, разность осадок и крены отдельных фундаментов и здания в целом необходимо рассчитывать с учетом неравномерности замачивания основания, различных условий фильтрации грунтовой воды в пределах контура сооружения, неоднородности распределения солей в грунте по площади и по глубине основания.

9.14(9.4). Относительная величина суффозионной осадки δc определяется при инженерно-геологических изысканиях, как правило, полевыми испытаниями статической нагрузкой и для детального изучения отдельных участков строительной площадки дополнительно лабораторными методами.

При наличии исследований и опыта строительства в аналогичных геологических условиях определение относительной величины суффозионной осадки допускается выполнять только лабораторными методами.

9.15. Относительная величина суффозионной осадки δc определяется в основном по данным полевых испытаний засоленных грунтов статической нагрузкой с длительным замачиванием основания. В лабораторных условиях определение суффозионной осадки выполняют с помощью компрессионно-фильтрационных испытаний.

При наличии сопоставимых результатов полевых и лабораторных исследований допускается при расчете величины относительной суффозионной осадки δc использовать эмпирические поправочные коэффициенты, корректирующие данные лабораторных испытаний засоленных грунтов по результатам штамповых испытаний в аналогичных грунтовых условиях.

9.16. Для ориентировочных расчетов длительности полного растворения и вымыва солей из грунтов основания, величины и времени развития суффозионной осадки засоленных грунтов допускается применять формулы, полученные теоретическим и экспериментальным путем.

9.17 (9.5). Длительность испытания грунта для определения относительной величины суффозионной осадки должна быть не менее 5 сут при содержании солей в грунтах до значений: в крупнообломочном грунте:

в глинистом заполнителе, если в грунте его более 30 %, — 7 %;

в песчаном заполнителе, если его более 40 %, — 2 %;

в обломках крупнообломочного грунта — 3 %;

в песчаном грунте — 2 %;

в глинистом грунте (непросадочном) при е>0,67 — 7 %.

При большей засоленности грунта для проектирования оснований зданий и сооружений I и II классов длительность испытания должна быть не менее 3 мес, а для зданий III и IV классов допускается менее 3 мес.

9.18. Длительность штамповых и компрессионно-фильтрационных испытаний нормируется лишь минимальным сроком проведения опыта и зависит от свойств грунта, условий фильтрации, величины действующей нагрузки.

Минимальный срок проведения полевых лабораторных испытаний засоленных грунтов с замачиванием должен составлять не менее 5 сут. За это время в слабозасоленных грунтах может быть установлена величина просадки, выявлено влияние выноса легкорастворимых солей на осадку грунта, оценена возможность развития суффозионной осадки и необходимость дальнейшего проведения испытаний.

При большей засоленности грунта — свыше величин, указанных в п. 9.17(9.5), — при проектировании оснований зданий и сооружений I и II классов длительность испытания должна быть не менее трех месяцев. Испытания грунтов, содержащих среднерастворимые соли в количестве свыше 20 %, должны продолжаться, как правило, не меньше года.

9.19(9.6). Полная величина деформаций оснований из засоленных грунтов должна определяться суммированием деформаций, вызванных:

уплотнением грунта;

суффозионными явлениями (суффозионная осадка);

просадкой грунта (если он относится к просадочным);

набуханием и усадкой грунта (если он является набухающим).

9.20(9.7). При неоднородном распределении солей в грунтовой толще и возможности развития неравномерных суммарных деформаций, превышающих допустимые для проектируемого здания или сооружения, должны предусматриваться мероприятия по предотвращению замачивания основания и в случае необходимости — конструктивные мероприятия в соответствии с требованиями п. 3.88 настоящей главы (п. 3.338 Рук.) или заложение фундаментов на незаселенные грунты с прорезкой толщи засоленных грунтов.

9.21. Выбор мероприятий, направленных на снижение влияния деформаций оснований на эксплуатационную пригодность зданий и сооружений, следует производить по указаниям пп. 3.333 и 3.334 (3.83-3.84) с учетом особенностей свойств различных видов засоленных грунтов.

В крупнообломочных засоленных грунтах, обладающих высокой фильтрационной способностью и большой неоднородностью, применение методов искусственного закрепления практически исключено. При проектировании зданий и сооружений на таких грунтах рекомендуется осуществлять прорезку толщи засоленного грунта с установкой фундаментов на незаселенные грунты или предусматривать конструктивные мероприятия, уменьшающие неравномерные осадки.

В засоленных песках для ликвидации просадочных свойств и уменьшения величины суффозионной осадки наиболее целесообразно применять уплотнение грунтов основания (тяжелыми трамбовками, с использованием энергии взрыва, гидровиброуплотнением, поверхностным виброуплотнением).

При проектировании оснований, сложенных загипсованными суглинками, супесями и песками, рекомендуется выполнять искусственное (химическое) закрепление грунтов.

При высокой степени засоления грунтов наиболее экономичными являются мероприятия:

прекращающие или замедляющие движение фильтрационного потока (глинистые, силикатные, битумные, цементные водонепроницаемые завесы);

снижающие растворяющую способность грунтовых вод (искусственное насыщение фильтрационного потока солями);

обеспечивающие защиту солей от растворения путем образования нерастворимых покрытий на поверхности соли.

ОПРЕДЕЛЕНИЕ СУФФОЗИОННОЙ ОСАДКИ ОСНОВАНИЙ, СЛОЖЕННЫХ ЗАСОЛЕННЫМИ ГРУНТАМИ

9.22. (25 прил. 3). Суффозионная осадка основания , сложенного засоленными грунтами, определяется по формуле:

(9.1) (28 прил. 3)

где n — число слоев, на которое разбита толща засоленных грунтов, в которой возможно образование суффозионной осадки;

δci — относительная величина суффозионной осадки грунта i-гo слоя при давлении в этом слое от нагрузки, передаваемой фундаментом, и от собственного веса грунта, находимая по указаниям пп. 26 — 28 (пп. 9.25-9.32 Рук.);

hi — толщина i-гo слоя засоленного грунта.

9.23. Суффозионная осадка основания Sc, сложенного засоленными грунтами, рассчитывается по формуле (9.1) (28 прил. 3), если величина относительной суффозионной осадки, определенной по указаниям пп. 9.27 (27 прил. 3) и 9.30 (28 прил. 3), составляет δc>0,01.

Суммирование осадок по формуле (9.1) (28 прил. 3) выполняется в пределах зоны суффозионных осадок, начиная от подошвы фундамента и до нижней границы зоны.

При расчете по формуле (9.1) (28 прил. 3) нижняя граница зоны суффозионных осадок грунта принимается на глубине, где относительная суффозионная осадка δc<0,01 (при давлении, действующем на рассматриваемой глубине от собственного веса грунта и нагрузки от фундамента). Нижняя граница зоны суффозионных осадок определяется по экспериментальным данным, а при их отсутствии принимается до глубины залегания основания слоя грунта с содержанием солей, превышающим величины, указанные в п. 9.17 (9.5).

При подсчете по формуле (9.1) (28 прил. 3) зона суффозионных осадок разбивается на слои примерно равной толщины, с учетом литологического разреза и засоленности грунта. Изменение суммарного давления в пределах каждого выделенного слоя не должно превышать 0,5 кгс/см2.

Пример расчета осадки фундамента под колонну здания

Фундамент квадратный со стороной b = 2 м. Давление по подошве 2 кгс/см2.

По данным инженерно-геологических изысканий, от поверхности до глубины 0,5 м расположен почвенный слой I. Ниже (на глубине 0,5-1,5 м) находится слой II супеси с содержанием гипса до 50-60 % («гипсовый» горизонт). Этот слой подстилается супесью и суглинками (слой III) с содержанием гипса в количестве до 25 %. Загипсованность грунта этого слоя уменьшается по глубине и грунт переходит без резких границ в незаселенный плотный супесчано-суглинистый.

Лабораторные и полевые испытания грунта слоя II показали, что он не может быть использован в качестве основания проектируемых фундаментов. По данным лабораторных определений, δпр = 0,05 и δc = 0,09, причем суффозионная осадка не стабилизировалась после 8 месяцев испытаний и продолжала нарастать.

Таблица 9.2

Средняя глубина расчетного слоя z, м Засоленность, % Относительная суффозионная осадка δc Относительная просадочность δпр Среднее давление от фундамента pz, кгс/см2 Среднее природное давление в грунте, pб, кгс/см2 Суммарное давление в расчетном слое, кгс/см2 Величина суффозионной осадки слоя Sc, см
0,25 20-25 0,025 0,02 1,83 0,15 1,98 2,25
0,75 10-20 0,025 <0,01 1,52 0,19 1,71 1,25
1,25 10-20 0,020 <0,01 1,09 0,23 1,32 1,00
1,75 10-15 0,020 <0,01 0,76 0,27 1,03 1,00
2,25 5-10 0,015 <0,01 0,53 0,32 0,85 0,75
2,75 5-10 0,015 <0,01 0,39 0,37 0,76 0,75
3,25 5-10 0,015 <0,01 0,29 0,42 0,71 0,75
3,75 <5 0 <0,01

В связи с этим основанием проектируемого здания приняты грунты слоя III с глубиной заложения фундаментов h = 1,5 м. В верхней части слоя (на глубину примерно 1,5 м) объемный вес грунта γ = 1,42 гс/см3; удельный вес γs = 2,65 гс/см3; коэффициент Пористости е = 0,92; содержание гипса 10-25 %. Ниже грунт более плотный: γ = 1,60 гс/см3; γs = 2,65 гс/см3; е = 0,7; содержание гипса 5-15%. Уровень грунтовых вод разведочными скважинами обнаружен на глубине 10 м, однако в процессе эксплуатации здания ожидаются подъем уровня грунтовых вод и обводнение основания. Движение водного потока будет происходить в сторону реки, расположенной в 2 км от стройплощадки.

Разбиваем основание ниже подошвы фундамента на слои, равные 0,5 м, и определяем суммарное давление, действующее в середине каждого расчетного слоя. В табл. 9.2 приведены величины, используемые при определении суффозионной осадки Sc.

При подсчете величины природного давления в грунте объемный вес грунта слоя III принимается с учетом взвешивающего действия воды:

для верхней части слоя (от основания фундамента до глубины 2 м)

для нижней части слоя (2-3,5 м)

Величину суффозионной осадки толщи засоленного грунта определяем, используя данные табл. 9.2, по формуле

9.24. В случае если δc<0,01, осадка основания, сложенного засоленными грунтами, рассчитывается в соответствии с требованиями раздела 3 настоящего Руководства как для обычных незасоленных грунтов с использованием модуля деформации Ес или компрессионного модуля деформации Екс, учитывающих суффозионную осадку и определяемых по указаниям пп. 9.29 и 9.33.

9.25 (26 прил. 3). Величина относительной суффозионной осадки δc засоленного грунта определяется полевыми испытаниями статической нагрузкой или лабораторными компрессионно-фильтрационными методами в случаях, устанавливаемых п. 9.4 настоящей главы (п. 9.14 Рук.).

Испытания должны проводиться при длительной фильтрации воды через грунт в течение сроков согласно указаниям п. 9.5 настоящей главы (п. 9.17 Рук.).

9.26. Полевые испытания статической нагрузкой (штампами) для определения относительной суффозионной осадки δc засоленного грунта производят в условиях длительного замачивания грунтового основания.

При проведении штамповых и компрессионно-фильтрационных испытаний вначале нагрузку доводят ступенями до заданного давления, указанного в п. 9.22 (25 прил. 3), и определяют осадку грунта при естественной влажности. Затем начинают длительную фильтрацию воды через грунт при заданном неизменном давлении, что дает возможность определить величину суффозионной осадки. После окончания опыта производят разгрузку грунта ступенями.

Напорные градиенты принимаются в зависимости от гидрогеологических условий площадки строительства, структурных особенностей грунта и должны обеспечивать нормальную фильтрацию воды через грунт. В качестве фильтрующей жидкости следует применять воду, близкую по составу к той, которая будет фильтровать в грунте в натурных условиях. При отсутствии таких данных о воде допускается использовать дистиллированную или водопроводную воду.

При проведении испытаний статической нагрузкой рекомендуется производить с помощью глубинных марок измерение послойной осадки толщи грунта в основании опытного штампа.

В ходе опытов периодически выполняют определение химического состава фильтратов, измеряют коэффициент фильтрации грунта, фиксируют общее количество профильтровавшейся воды. До и после опыта определяют содержание солей, влажность, объемный и удельный веса, число пластичности грунта.

Результаты испытаний должны сопровождаться сведениями об условиях проведения опыта (величине напорного градиента, химическом составе фильтрующейся жидкости и т. д.).

Компрессионно-фильтрационные испытания следует вести с двукратной повторностью.

Рекомендуется после окончания длительного испытания статической нагрузкой и демонтажа штамповой установки произвести отбор образцов (монолитов) выщелоченного грунта для определения в лаборатории его прочностных свойств. Определение прочностных характеристик можно производить также непосредственно в зоне под штампом, подвергшейся выщелачиванию солей, с помощью полевых установок для испытания грунтов на сдвиг.

Пункты испытаний грунтов статическими нагрузками рекомендуется назначать в пределах контуров расположения наиболее ответственных и тяжелых зданий и сооружений, в местах максимальной и минимальной засоленности грунта. Шурфы и котлованы для штамповых испытаний должны располагаться на расстоянии не более 1-2 м от инженерно-геологических выработок. При неоднородной засоленности грунта по глубине статические испытания выполняют на глубине заложения фундаментов и в пределах деформируемой зоны. Число испытаний на каждом участке площадью до 75 тыс. м2 должно быть не менее трех и назначаться с учетом геологических и гидрогеологических условий площадки строительства, класса и конструктивных особенностей здания и сооружения, опыта изысканий в аналогичных грунтовых условиях.

9.27 (27 прил. 3). Величина относительной суффозионной осадки δc, устанавливаемая полевыми испытаниями, определяется по формуле:

(9.2) (29 прил. 3)

где Sс.ш — суффозионная осадка штампа после непрерывного замачивания в течение всего процесса испытания под давлением, указанным в п. 25 (п. 9.22 Рук.);

hш — сжимаемая толща основания под штампом.

9.28. По данным полевых испытаний засоленных грунтов статической нагрузкой с длительным замачиванием основания определяется:

относительная суффозионная осадка δc;

модуль деформации: при естественной влажности Е; при длительной фильтрации воды Ec (при δc<0,01).

Сжимаемая толща основания под штампом h принимается по результатам послойного измерения осадки грунта глубинными марками или равной 1,5d круглого штампа (где d — диаметр) или 1,5l квадратного штампа (где l — сторона).

9.29. Величина модуля деформации Ес вычисляется по формуле:

(9.3)

где р — давление на штамп, равное сумме давлений от нагрузки фундамента и собственного веса грунта на рассматриваемой глубине;

Sр.ш — осадка штампа при естественной влажности грунта под давлением р;

Sс.ш — осадка штампа при длительной фильтрации воды через грунт под давлением р;

μ — коэффициент Пуассона.

9.30. (28 прил. 3). Величина относительной суффозионной осадки δc по компрессионно-фильтрационным испытаниям определяется по формуле:

(9.4)

где h — высота образца грунта природной влажности и плотности;

h’ — высота того же образца грунта после фильтрационного замачивания водой и обжатия давлением по указаниям п. 25 (9.22).

9.31. Величина δc определяется по формуле (9.4), если величина сжатия образца при естественной влажности Δhp составляет менее 5 % величины общего сжатия образца (включающего помимо Δhp сжатие образца при длительной фильтрации Δhc). Если же Δhp>0,05(Δhphc), то величина относительной суффозионной осадки δc по компрессионно-фильтрационным испытаниям определяется по формуле:

(9.5)

где h — высота образца грунта природной влажности и плотности;

h’ — высота того же образца грунта после непрерывной фильтрации в течение всего процесса испытания и обжатия давлением по указаниям п. 9.22 (25 прил. 3);

hp — высота того же образца грунта природной влажности, обжатого давлением по указаниям п. 9.22 (25 прил. 3).

9.32. По результатам компрессионно-фильтрационных испытаний определяется;

относительная суффозиойная осадка δc;

компрессионный модуль деформации при естественной влажности Eк и при длительной фильтрации воды Eкс (если δc<0,01).

При проектировании оснований зданий и сооружений величины Eк и Eкс допускается применять при наличии сопоставимых результатов штамповых испытаний аналогичных засоленных грунтов и при введении соответствующих коэффициентов.

9.33. Величина компрессионного модуля деформации Eкс, учитывающего суффозионную осадку, определяется по формуле:

(9.6)

где р — давление, при котором определена величина суффозионной осадки, равное давлению, действующему на рассматриваемой глубине от собственного веса грунта и нагрузки от фундамента;

 — относительное суммарное сжатие образца при естественной влажности и длительной фильтрации при давлении р;

Δhp и Δhc — сжатие образца соответственно при естественной влажности и при длительной фильтрации при давлении р;

h — исходная высота образца естественной влажности обжатого давлением, равным давлению от собственного веса грунта на рассматриваемой глубине;

β — коэффициент, зависящий от коэффициента бокового расширения грунта.

Пример расчета величины компрессионного модуля деформации

По данным инженерно-геологических изысканий основанием проектируемых фундаментов приняты супесчано-суглинистые загипсованные грунты (с содержанием гипса 5-20 %). Длительные лабораторные компрессионно-фильтрационные испытания показали, что при естественной влажности (W = 2-5%) грунты площадки малосжимаемы. При длительной фильтрации воды происходит суффозионная осадка грунта, однако величина δс не превышает 0,01. Характерная кривая компрессионной сжимаемости образца во времени приведена на рис. 9.1. Здесь же показан график Δh/h = f(p).

Поскольку δс<0,01, для дальнейших расчетов определяем модуль компрессионной деформации Eкс. При вычислении модуля учитываем общую сжимаемость образца (см. прямую II на рис. 9.1, б), состоящую из суммы осадок грунта естественной влажности под нагрузкой Δh (в интервале давлений р = 0-2 кгс/см2) и при длительной фильтрации воды Δhc;

Как показало сравнение результатов лабораторных и полевых испытаний исследуемых грунтов, коэффициент перехода от компрессионного модуля деформации Eкс к модулю деформации Eс равен 1,5. В связи с этим для рассматриваемого случая принимаем Eс = 132 кгс/см2.

Рис. 9.1. Результаты компрессионно-фильтрационных испытаний (к примеру расчета Екс)

а — кривая изменения осадки во времени; б — график зависимости

Если проектируются мероприятия, исключающие замачивание грунтов основания, то модуль деформации вычисляется с учетом сжимаемости грунта под нагрузкой при природной влажности (при коэффициенте перехода, равном 1, полученном для данных грунтовых условий):

 

Прейти к содержанию

Руководство по проектированию оснований зданий и сооружений

Перейти в раздел

Нормативные документы