РАСЧЕТ ТРЕХШАРНИРНЫХ СИСТЕМ

Хабаровск 2004

Министерство образования Российской Федерации

Государственное образовательное учреждение высшего профессионального образования «Хабаровский государственный технический университет»

РАСЧЕТ ТРЕХШАРНИРНЫХ СИСТЕМ Часть I. Краткие сведения из теории

Методические указания к изучению раздела курса «Строительная механика» для студентов строительных и дорожных специальностей

> Хабаровск Издательство ХГТУ 2004

УДК 624.072.325

Расчет трехшарнирных систем. Ч. І. Краткие сведения из теории: Методические указания к изучению раздела курса «Строительная механика» для студентов строительных и дорожных специальностей / Сост. Ю.М.Даниловский. – Хабаровск: Изд-во Хабар. гос. техн. ун-та, 2004. - 21 с.

В методических указаниях приведены общие сведения о трехшарнирных системах, рассмотрены их отличительные особенности, условия геометрической неизменяемости, а также кратко сформулированы основные теоретические положения расчета на неподвижную и подвижную нагрузку.

Печатается в соответствие с решениями кафедры «Механика деформируемого твердого тела» и методического совета института архитектуры и строительства.

© Издательство Хабаровского государственного технического университета, 2004

1. Общие положения

Трехшарнирной называется система, состоящая из двух дисков, соединенных между собой шарниром и двумя шарнирно неподвижными опорами - с основанием. Если диски криволинейны и обращены выпуклостью в направлении, противоположном действию основной нагрузки, такая конструкция называется трехшарнирной аркой (рис. 1, а); если диски образованы элементами ломаного очертания, она называется трехшарнирной рамой (рис. 1, б).

Рис. 1

Отличительной особенностью таких систем по сравнению с балочными является наличие горизонтальных составляющих опорных реакций H_A и H_B (распоров) при вертикальной нагрузке, направленных внутрь пролета (рис. 2). Поэтому трехшарнирные арки и рамы называют распорными.

Рис. 2

Из анализа напряженно-деформированного состояния распорных систем следует, что они испытывают сложный вид сопротивления, характеризующийся сочетанием изгиба со сжатием.

Опорные шарниры *A* и *B* называются пятовыми, а шарнир *C* – ключевым. Расстояние *l* между опорными вертикалями называется пролетом, рас-

стояние по вертикали от шарнира C до линии соединяющей опоры – стрелой подъема f (рис. 2).

Важной геометрической характеристикой арки является отношение f/l. При $f/l \le 1/5$ арка считается пологой, при f/l > 1/5 – подъемистой.

Применение трехшарнирных систем целесообразно в тех случаях, когда восприятие распора *H* обеспечивается надежными фундаментами.

Кроме того, распор H можно «погасить» и внутри самой конструкции постановкой так называемой затяжки, расположенной на одном уровне с опорами (рис. 3, а) или выше их (рис. 3, б).

Рис. 3

Если же восприятие распора в достаточной степени не обеспечено, то применение трехшарнирных систем нецелесообразно, поскольку в них появляются большие изгибающие моменты (для пологих арок приблизительно такие же, как в балках). Расход материала при этом в арках и в равнопролетных балках примерно одинаков, а трудоемкость изготовления всегда значительно больше.

Необходимое условие геометрической неизменяемости и неподвижности относительно основания определяется формулой П.Л.Чебышева:

$$W = 3\mathcal{A} - 2\mathcal{I}\mathcal{I} - C_{on} \le 0, \qquad (1)$$

где *W* - число степеней свободы,

I - количество соединяемых дисков,

С оп- количество опорных связей.

Для трехшарнирных арок и рам (рис. 1, а, б)

$$W = 3 \cdot 2 - 2 \cdot 1 - 4 = 0,$$

т.е. условие (1) выполняется.

Равенство нулю числа степеней свободы *W* означает, что при выполнении достаточного условия геометрической неизменяемости и неподвижности относительно основания трехшарнирная система является статически определимой. Достаточное условие вытекает из анализа внутренней структуры системы, вида опорных устройств и характера их расположения. В соответствии с принципами образования простейших структурно неизменяемых систем левая и правая полуарки, а также основание, соединены попарно тремя шарнирами, не лежащими на одной прямой (рис. 4).

Рис. 4

Аналогично образована арка с затяжкой, которая опирается на фундамент с помощью трех стержней, не параллельных и не пересекающихся в одной точке (рис. 5).

Рис. 5

Таким образом, трехшарнирные арки и рамы с затяжкой и без затяжки являются геометрически неизменяемыми, неподвижными относительно основания, статически определимыми системами.

Трехшарнирные системы могут быть симметричными и несимметричными, иметь опоры на одном и разных уровнях, очертание оси арки параболическое, круговое, эллиптическое и т.п. Они широко применяются при строительстве общественных зданий, зрелищных и сельскохозяйственных сооружений.

2. Аналитический расчет на неподвижную нагрузку

2.1. Определение опорных реакций

Вертикальные составляющие опорных реакций и распор в трехшарнирной арке без затяжки (рис. 6 а) определяются по формулам

$$V_A = R_A^{\delta} ; \quad V_B = R_B^{\delta} ; \quad H = \frac{M_C^{\delta}}{f} , \qquad (2)$$

где R_A^{δ} , R_B^{δ} , M_C^{δ} - левая и правая опорные реакции, а также момент в сечении *C* равнопролетной балки, загруженной той же нагрузкой, что и арка (рис. 6, б).

Рис. 6

В арке с затяжкой опорные реакции определяются теми же формулами, причем стрела подъема отсчитывается от уровня затяжки (рис. 3, а, б).

2.2. Определение внутренних усилий

Изгибающий момент в сечении арки численно равен алгебраической сумме моментов всех сил, расположенных по одну сторону от сечения, относительно центра тяжести этого сечения.

Поперечная (продольная) сила в сечении арки есть алгебраическая сумма проекций всех сил на ось, перпендикулярную (параллельную) касательной к оси арки в данном сечении.

Изгибающий момент считается положительным, если он растягивает нижние (внутренние) волокна арки и отрицательным – в противном случае.

Поперечная сила считается положительной, если она вращает обе части арки, разделенные сечением по часовой стрелке. В противном случае – она отрицательна.

Продольная сила считается положительной, если она растягивает арку, и отрицательной – в противном случае.

При расчете ось арки разбивается на участки, количество которых, как правило, должно быть не менее восьми. Изгибающие моменты, поперечные и продольные силы в сечении k арки при вертикальной нагрузке (рис. 6, а) определяются по формулам

$$M_{k} = M_{k}^{\delta} - Hy_{k}; \qquad (3)$$

$$Q_k = Q_k^{\delta} \cos \varphi_k - H \sin \varphi_k; \qquad (4)$$

$$N_k = -Q_k^\delta \sin \varphi_k - H \cos \varphi_k, \qquad (5)$$

где M_k^{δ} и Q_k^{δ} - изгибающий момент и поперечная сила в сечении равнопролетной балки (рис. 6, б);

 y_k - ордината, отсчитываемая от прямой, соединяющей опорные шарниры, до центра тяжести сечения k;

 φ_k - угол между касательной к оси арки в точке k и горизонтальной линией.

Как видно из формул (3), (4) и (5), при одинаковых пролетах и нагрузке ввиду наличия распора, изгибающий момент и поперечная сила в арке меньше, чем в балке, что свидетельствует об экономичности арочной конструкции по сравнению с балочной и называется «арочным эффектом».

С другой стороны, наличие распора вызывает необходимость создания массивных опор, способных воспринимать большие горизонтальные усилия.

В арке с повышенной затяжкой усилия M_k , Q_k , и N_k до уровня затяжки определяют по формулам (3), (4) и (5) при H=0, а выше уровня затяжки – по тем же формулам при $H\neq 0$, причем в данном случае H есть усилие в затяжке, а ордината у отсчитывается от уровня затяжки. Для определения усилия в затяжке её необходимо разрезать и составить уравнение моментов левых или правых сил (включая момент усилия в затяжке) относительно шарнира *C*.

Угол φ определяется из соотношения $tg\varphi = \frac{dy}{dx}$, где y = y(x) - уравнение

оси трехшарнирной арки в системе координат $x \partial y$ (рис. 6, а).

Если арка очерчена по квадратной параболе, то

$$y = \frac{4f}{l^2} x(l-x);$$

$$tg \varphi = \frac{dy}{dx} = \frac{4f}{l^2} (l-2x).$$
(6)

В случае синусоидального очертания

$$y = f \sin\left(\frac{\pi x}{l}\right);\tag{7}$$

$$tg \varphi = \frac{dy}{dx} = \frac{\pi f}{l} \cos\left(\frac{\pi x}{l}\right).$$

При круговом очертании

$$y = \sqrt{R^2 - \left(\frac{l}{2} - x\right)^2} - R + f;$$
 (8)

$$\sin \varphi = \frac{l-2x}{2R}, \qquad \cos \varphi = \frac{y+R-f}{R},$$

где
$$R = \frac{l^2}{8f} + \frac{f}{2}$$

В случае эллиптического очертания

$$y = \frac{2f}{l} \sqrt{x(l-x)}; \qquad (9)$$

$$dy \qquad f(l-2x)$$

$$tg\varphi = \frac{dy}{dx} = \frac{f(l-2x)}{l\sqrt{x(l-x)}}$$

Всегда следует помнить о том, что для всех сечений левой полуарки угол ϕ положительный, а для сечений правой полуарки – отрицательный.

сти:

Расчет арки рекомендуется выполнять в следующей последовательно-

- 1. Определение геометрических характеристик её оси по формулам (6) (9) в табличной форме (табл. 1).
- 2. Расчет равнопролетной балки (рис. 6, б) и определение опорных реакций по формулам (2).
- Определение внутренних усилий по формулам (3) (5) в табличной форме (табл. 2) с последующим их графическим представлением. К расчетным следует относить всегда сечения, расположенные бесконечно близко слева (-0) и справа (+0) от точек приложения сосредоточенных нагрузок.

Таблица 1

Номер расчетного сечения	х _к (м)	^у к (м)	$tg \varphi_k$	φ_k	sin (1)	$\cos \varphi_k$
				(град, рад)	$\sin \varphi_k$	

Таблица 2

№ сеч.	M_k^{δ}	$-H\varphi_k$	M _k	$Q_k^{\delta} \cos \varphi_k$	$-H\sin\varphi_k$	Q_k	$-Q_k^{\delta}\sin\varphi_k$	$-H\cos\varphi_k$	N _k
	(кНм)	(кНм)	(кНм)	(кН)	(ĸH)	(ĸH)	(ĸH)	(ĸH)	(кН)

3. Кривая давления. Рациональное очертание оси трехшарнирной арки

Из теории внецентренного сжатия курса «Сопротивление материалов» известно, что действие момента и центральной продольной силы можно всегда заменить действием продольной силы, расположенной внецентренно. При этом эксцентриситет ее будет равен:

$$e = \frac{M}{N}.$$
 (10)

Сделаем где-либо разрез арки, отбросим левую часть и найдем в рассматриваемом сечении M, Q и N (рис. 7).

Вычислим эксцентриситет e по формуле (10) и отложим его от оси арки. Через полученную точку a должна проходить внецентренно приложенная продольная сила N. Через эту же точку должна проходить равнодействующая всех сил, действующих на арку слева от сечения.

Проведем ряд поперечных сечений и найдем в каждом сечении точку приложения равнодействующей. Соединив эти точки, получим некоторый многоугольник равнодействующих или многоугольник давления. Очевидно, что переломы в многоугольнике должны быть в местах приложения сосредоточенных внешних сил.

Рис. 8

Крайние лучи многоугольника давления должны проходить через опорные шарниры и указывать направления опорных реакций.

При вертикальной нагрузке все вертикальные отрезки, заключенные между многоугольником давления и осью арки, являются ординатами эпюры моментов, измеренными в одном, постоянном для всех сечений арки, масштабе.

Если к арке приложена распределенная нагрузка, то многоугольник давления становится кривой давления.

Итак, кривая давления соединяет точки приложения в каждом сечении равнодействующей всех сил, расположенных с одной стороны от сечения.

Кривая давления наглядно иллюстрирует работу арки. Чем ближе кривая давления к оси арки, тем более равномерно распределены нормальные напряжения в поперечных сечениях.

Рациональным очертанием оси трехшарнирной арки называется такое её очертание, при котором кривая давления от заданной нагрузки совпадает с осью арки. Следовательно во всех сечениях такой арки изгибающий момент равен нулю. Если ось арки и кривая давления определяются соответственно уравнениями

$$y = y(x) \quad \mathbf{и} \quad \eta = \eta(x), \tag{11}$$

то условием того, что ось арки имеет реальное очертание, является тождество

$$y = \eta. \tag{12}$$

Рассмотрим случай действия на арку только вертикальной нагрузки (рис. 8).

Составим выражение момента левых сил относительно любой точки *b* кривой давления, имеющей координаты

$$M_{b} = V_{A}x - H\eta - \sum_{i=1}^{m} F_{i}r_{i} = 0,$$

откуда

$$\eta = \frac{V_A x - \sum_{i=1}^{m} F_i r_i}{H}.$$
(13)

Числитель выражения (13) численно равен изгибающему моменту в сечении *b* с абсциссой *x* простой балки, т.е. $M \frac{\delta}{x}$. Поэтому

$$\eta = \frac{M \overset{\delta}{x}}{H} . \tag{14}$$

Используя соотношение (12), получаем следующее уравнение рациональной оси арки:

$$y = \frac{M \frac{\partial}{\partial x}}{H}.$$
 (15)

Таким образом, при вертикальной нагрузке ось арки будет рациональной, если ее очертание меняется по закону изменения балочного момента.

4. Расчет по линиям влияния

4.1. Построение линий влияния усилий

Линией влияния называется график, изображающий закон изменения той или иной статической или кинематической величины S (например, изгибающего момента в сечении арки) в зависимости от координаты положения единичной подвижной силы $\overline{F} = 1$ на сооружении. Каждая ордината этого графика (в дальнейшем – *лв* S) численно равна исследуемой величине S при положении $\overline{F} = 1$ над этой ординатой.

Линии влияния опорных реакций. Из выражений (2) следует, что

лв
$$V_A = \pi R_A^{\delta}$$
; лв $V_B = \pi R_B^{\delta}$; лв $H = \pi R_B^{\delta}$. (16)

Соответствующие графики изображены на рис. 9, а, б, в.

Линии влияния внутренних усилий. Из выражений (3) – (5) следует, что

лв
$$M_k = \pi B M_k^{\delta} + (-\pi B H) y_k;$$
 (17)

лв
$$Q_k = \pi e \ Q_k^\delta \cos \varphi_k + (-\pi e \ H) \sin \varphi_k;$$
 (18)

лв
$$N_k = (-\pi e \ Q_k^{\delta}) \sin \varphi_k + (-\pi e \ H) \cos \varphi_k$$
, (19)

т.е. каждая из трех линий влияния получается путем суммирования двух соответствующих графиков. Результаты их операций приведены на рис. 9, г, д, е и рис. 10, а, б, в, г, д, е.

Следует подчеркнуть, что параллельность левой и средней ветвей линий влияния Q_k и N_k обязательна и является проверкой правильности их построения.

Рис. 10

4.2. Определение усилий от неподвижной нагрузки

При загружении трехшарнирной арки системой неподвижных сосредоточенных сил F_i и равномерно распределенных нагрузок q_j усилие S по линиям влияния определяется выражением

$$S = \sum_{i=1}^{n} F_{i} y_{i} + \sum_{j=1}^{m} q_{j} w_{j}, \qquad (20)$$

- где у_{*i*} ордината линии влияния *S*, расположенной под *i*-той сосредоточенной силой;
 - n количество сил;
 - *w* площадь линии влияния S, расположенной под *j*-той распределенной нагрузкой;
 - т количество распределенных нагрузок.

В выражении (20) F_i и q_j принимаются положительными, если их направление совпадает с направлением единичной подвижной силы $\overline{F} = 1$ при построении лв S, и наоборот. Знаки y_i и w_j совпадают со знаками соответствующих ординат лв S. При расположении равномерно распределенной нагрузки q_j над лв S, состоящей из нескольких участков разных знаков, их общая площадь w_j определяется как алгебраическая сумма площадей отдельных участков лв S.

4.3. Расчет на подвижную нагрузку

Для определения усилий от подвижной нагрузки её необходимо установить в наиболее невыгодное расположение на проезжей части сооружения. Различный характер линий влияния M_k и N_k создает определенные трудности при решении этой задачи. В связи с этим можно рассмотреть три варианта загружения.

1. Загружается только положительный участок линии влияния M_k (рис. 11).

Рис. 11

2. Загружается только отрицательный участок линии влияния M_k (рис. 12).

3. Загружается вся линия влияния M_k и N_k (рис. 13).

Рис. 13

Каждая из изображенных на рис. 11, 12, 13 $q_{_{3K6}}$ представляет собой равномерно распределенную по длине однозначного участка l линии влияния нагрузку, усилие от которой равно усилию от системы сосредоточенных сил поезда, помещенных в невыгоднейшее положение. Эквивалентная нагрузка для треугольной линии влияния зависит от l, положения её вершины $\alpha = \frac{a}{l}$ (рис. 11) и вида подвижной нагрузки. Типовые $q_{_{3K6}}$ приведены в соответствующих нормативных документах.

Расчет существенно упрощается, если ввести понятие ядровых моментов. При этом формулы для определения нормальных напряжений в крайних (фибровых) волокнах поперечного сечения арки становятся одночленными и, следовательно, позволяют более просто решать задачи, связанные с расчетом трехшарнирных систем на подвижную нагрузку (рис. 14):

$$\sigma_m = \frac{M_{gdp}^{(k_1)}}{W_m}; \qquad \sigma_n = \frac{M_{gdp}^{(k_2)}}{W_n}, \tag{21}$$

где $M_{gdp}^{(k_1)}$ - момент левых или правых сил относительно верхней ядровой точ-

ки k₁;

 $M_{gdp}^{(k_2)}$ - момент тех же сил относительно нижней ядровой точки k_2 .

Рис. 14

Координаты границ ядра сечения вычисляются по формулам

$$x_{k_{1}} = x_{k} - c_{1} \sin \varphi_{k}; \quad y_{k_{1}} = y_{k} + c_{1} \cos \varphi_{k};$$

$$x_{k_{2}} = x_{k} + c_{2} \sin \varphi_{k}; \quad y_{k_{2}} = y_{k} - c_{2} \cos \varphi_{k},$$
(22)

где *c*₁ и *c*₂ - расстояния от центра тяжести поперечного сечения до верхней и нижней ядровых точек.

Необходимые в этом случае линии влияния ядровых моментов строятся также, как линии влияния центральных изгибающих моментов.

5. Применение матриц влияния

Линия влияния дает информацию об изменении усилия (перемещения) лишь в одном определенном сечении сооружения. Более полную информацию о напряженно-деформированном состоянии сооружения в целом можно получить с помощью матриц влияния.

Матрицей влияния усилий (перемещений) называется линейный оператор $L_s = [S_{ik}]$, преобразующий вектор нагрузки \vec{F} в вектор искомых усилий \vec{S} (перемещений), согласно стандартной матричной операции:

$$\vec{S} = L_{S} \cdot \vec{F} \quad . \tag{23}$$

Элемент S_{ik} матрицы L_s , расположенный на пересечении *i*-той строки и k-го столбца есть усилие (перемещение) в *i*-том сечении конструкции от $\overline{F} = 1$, приложенной в сечении k. При построении вектора \overline{F} данную неподвижную нагрузку следует заменить статически эквивалентной системой сосредоточенных сил, приложенных в расчетных сечениях. Необходимое количество расчетных сечений конструкции зависит главным образом от её геометрических особенностей и характера действующей нагрузки.

Построение матрицы влияния L_{M} в трехшарнирной арке удобно выполнять по формуле

$$L_{\mathcal{M}} = L_{\mathcal{M}}^{\delta} - L_{\mathcal{M}}^{*} , \qquad (24)$$

где L_{M}^{δ} - матрица влияния моментов в простой балке того же пролета, что и арка;

 $L^*_{_{\mathcal{M}}}$ - определяется произведением

$$L_{\mathcal{M}}^{*} = Q_{\mathcal{M}} \cdot \wedge_{h}^{*} = \begin{vmatrix} y_{1} & 0 & 0 & \cdots & \cdots & 0 \\ 0 & y_{2} & 0 & \cdots & \cdots & 0 \\ 0 & 0 & y_{3} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & y_{n} \end{vmatrix} \cdot \begin{vmatrix} h_{1} & h_{2} & h_{3} & \cdots & h_{n} \\ h_{1} & h_{2} & h_{3} & \cdots & h_{n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ h_{1} & h_{2} & h_{3} & \cdots & h_{n} \\ h_{1} & h_{2} & h_{3} & \cdots & h_{n} \end{vmatrix},$$
(25)

где y_1 , y_2 , y_3 , ..., y_n - ординаты центров тяжести расчетных сечений арки (см. табл. 1); h_1 , h_2 , h_3 , ..., h_n - соответствующие ординаты линии влияния распора *H*;

n – количество расчетных сечений.

Таким образом, сформировав матрицу влияния моментов L_{M} и вектор нагрузки \vec{F} , можно определить вектор моментов \vec{M} :

$$\vec{M} = L_{M} \cdot \vec{F} . \tag{26}$$

Аналогичным образом можно вычислить векторы \vec{Q} и \vec{N} .

Приведенные выше рассуждения лежат в основе постановки более сложных задач строительной механики и, в частности, когда рассматривается загружение конструкции рядом совокупностей временных нагрузок или загружение поездом сосредоточенных грузов при его фиксированных положениях на сооружении.

Библиографический список

1. Дарков А.В., Шапошников Н.Е. Строительная механика. – М.: Высш. шк., 1986. – 607 с.

2. Смиронов А.Ф., Александров А.В. Лящеников Б.Я. Строительная механика. Стержневые системы. – М.: Стройиздат, 1981. – 512 с.

3. Киселев В.А. Строительная механика. Общий курс. – М.: Стройиздат, 1986. – 520 с.

4. Смирнов В.А., Иванов С.А., Тихонов М.А. Строительная механика. – М.: Стройиздат, 1984. – 208 с.

5. Клейн Г.К., Леонтьев Н.Н., Ванюшенков М.Г. и др. Руководство к практическим занятиям по курсу строительной механики (статика стержневых систем). – М.: Высш. шк., 1980. – 384 с.

Оглавление

1.	Общие положения, условия геометрической неизменяемости	3
2.	Аналитический расчет на неподвижную нагрузку	6
	2.1. Определение опорных реакций	6
	2.2. Определение внутренних усилий	7
3.	Кривая давления. Рациональное очертание оси трехшарнирной арки	9
4.	Расчет по линиям влияния	12
	4.1. Построение линий влияния усилий	12
	4.2. Определение усилий от неподвижной нагрузки	15
	4.3. Расчет на подвижную нагрузку	15
5.	Применение матриц влияния	18
	Библиографический список	20